Research on Orthogonalization Method of Installation Matrix of Landing IMU for Tianwen-1

FENG Shiwei1, LIN Song1, LI Yong1,2, XU Lijia1, LI Maodeng1,2

PDF(1039 KB)
PDF(1039 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (1) : 72-79. DOI: 10.15982/j.issn.2096-9287.2023.20210155
Article
Article

Research on Orthogonalization Method of Installation Matrix of Landing IMU for Tianwen-1

  • FENG Shiwei1, LIN Song1, LI Yong1,2, XU Lijia1, LI Maodeng1,2
Author information +
History +

Abstract

The IMU of Tianwen-1 is the core product of its navigation system; during the installation of gyro and accelerometer in IMU installation deviation and nonlinear scale factor occur, leading to the non-orthogonality of installation matrix and affecting the accuracy of IMU inertial navigation. In this paper, the orthogonality of gyro and accelerometer installation matrix was analyzed, and the orthogonalization algorithm of installation matrix for row vector was proposed, which improves the orthogonality of gyro and accelerometer installation matrix and reduces the distortion of installation error angle in the process of orthogonalization. The calibration test of IMU inertial navigation under typical working conditions was carried out. The test results show that after the installation matrix was orthogonalized according to row vector, the attitude accuracy of IMU inertial navigation was improved by 15.8%~54.7%, and the position accuracy was improved by 45.2%~85.7%. Adopting the above method, the percentage of static position and attitude performance improvement under various working conditions is consistent and not related to the test time; the percentage of dynamic position and attitude performance improvement under various working conditions is consistent and not related to the cumulative sum of rotation angle.

Keywords

inertial measurement unit / installation matrix / orthogonalization / accuracy of INS

Cite this article

Download citation ▾
FENG Shiwei, LIN Song, LI Yong, XU Lijia, LI Maodeng. Research on Orthogonalization Method of Installation Matrix of Landing IMU for Tianwen-1. Journal of Deep Space Exploration, 2023, 10(1): 72‒79 https://doi.org/10.15982/j.issn.2096-9287.2023.20210155

References

[1] 黄翔宇,徐超,胡荣海,等. 火星精确定点着陆多信息融合自主导航与控制方法研究[J]. 深空探测学报(中英文),2019,6(4):348-357
HUANG X Y,XU C,HU R H,et al. Research of autonomous navigation and control scheme based on multi-information fusion for Mars pinpoint landing[J]. Journal of Deep Space Exploration,2019,6(4):348-357
[2] 薛连莉,翟峻仪,葛悦涛. 2020年国外惯性技术发展与回顾[J]. 导航定位与授时,2021,8(3):59-67
XUE L L,ZHAI J Y,GE Y T. Development and review of foreign inertial technology in 2020[J]. Navigation Positioning and Timing,2021,8(3):59-67
[3] 任顺清,陈希军,王常虹. 惯导检测设备的检测及试验技术(第1版)[M]. 北京:科学出版社,2017.
[4] 秦永元. 惯性导航(第三版)[M]. 北京:科学出版社,2020.
[5] 袁保伦,饶谷音,廖丹. 光学陀螺旋转式惯导系统的安装误差效应分析[J]. 系统工程与电子技术,2010,32(11):2407-2411
YUAN B L,RAO G Y,LIAO D. Mounting error analysis for rotating inertial navigation system with optical gyroscopes[J]. Systems Engineering and Electronics,2010,32(11):2407-2411
[6] 严恭敏,翁浚. 捷联惯导算法与组合导航原理[M]. 西安:西北工业大学出版社,2019.
[7] 王坚,梁建,韩厚增. 低成本IMU的多位置旋转现场标定方法[J]. 中国惯性技术学报,2017,25(3):294-298
WANG J,LIANG J,HAN H Z. Method for low-cost IMU in-field calibration through multi-position rotation[J]. Journal of Chinese Inertial Technology,2017,25(3):294-298
[8] 张福斌,周振华. 一种惯性测量单元非正交安装的单轴转位方法[J]. 中国惯性技术学报,2017,25(2):161-165
ZHANG F B,ZHOU Z H. Single-axis rotation modulation for non-orthogonal installation of IMU[J]. Journal of Chinese Inertial Technology,2017,25(2):161-165
[9] 马亚平,魏国,周庆东. 改进的IMU传感器安装误差正交补偿方法[J]. 传感器与微系统,2016,35(9):9-13
MA Y P,WEI G,ZHOU Q D. An improved method of orthogonal compensation for IMU installation error[J]. Transducer and Microsystem Technologies,2016,35(9):9-13
[10] BRITTING K R. 惯性导航系统分析[M]. 王国臣,李倩,高伟,等译. 北京:国防工业出版社,2017.
[11] 冯士伟,李勇,林松,等. 一种深空探测用3S光纤陀螺石英加计惯性测量单元[C]//月球和深空探测国际学术研讨会. 北京:[s. n. ],2019.
FENG S W,LIN Y,LIN S,at al. A 3-slant IMU composition of fiber optic gyroscope and quartz-accelerometer for deep-space detection[C]//International Symposium on Lunar and Deep Space. Beijing,China:[s. n. ],2019.
[12] GAO P,LI K,SONG T,er al. An accelerometers-size-effect self-calibration method for triaxis rotational inertial navigation system[J]. IEEE Transactions on Industrial Electronics,2018,65(2):1655-1664
[13] CHEN J Y,ZHANG D L,HAN G T,et al. A method for lever arm estimation in INS/GPS integration using direct unscented kalman filter[C]//2020 IEEE 6th International Conference on Computer and Communications (ICCC). Chengdu,China:[IEEE],2020.
[14] 王海波,张汉武,张萍萍,等. 基于横向地球坐标的惯性导航方法[J]. 中国惯性技术学报,2016,12(6):716-722
WANG H B,ZHANG H W,ZHANG P P,et al. Inertial navigation algorithm for polar region based on transverse terrestrial coordinate[J]. Journal of Chinese Inertial Technology,2016,12(6):716-722
[15] GAO P,LI K,WANG L,et al. Four-position heading effect calibration algorithm for rotation inertial navigation system based on fiber optic gyro[J]. Optical Engineering,2016,55(7):1051-1058
[16] 魏莉莉,黄军,傅长松,等. 带斜置元件的光纤陀螺捷联惯组标定方法[J]. 中国惯性技术学报,2015,23(1):14-19
WEI L L,HUANG J,FU C S,et a1. Calibration method of FOG strap down IMU with skewed sensor axis[J]. Journal of Chinese Inertial Technology,2015,23(1):14-19
[17] GAO W,ZHANG Y,WANG J G. Research on inertial alignment and self-calibration of rotary strap down inertial navigation systems[J]. Sensors,2015,15:3154-3171
[18] HU J,CHENG X H,ZHU Y X,et al. On-line integrated correction of attitude and heading for singleaxis rotary SINS[J]. Journal of Southeast University(Natural Science Edition),2016,46(3):494-498
[19] HUANG X Y,LI M D,WANG X L,et al. The Tianwen-1 guidance,navigation,and control for Mars entry,descent,and landing[J]. Space:Science and Technology,2021(1):84-96
PDF(1039 KB)

Accesses

Citations

Detail

Sections
Recommended

/