PDF(3083 KB)
Special Issue: Small Celestial Body Exploration and Defense
Special Issue: Small Celestial Body Exploration and Defense
Autonomous Navigation and Guidance for Asteroid Kinetic Impact Mission
- HUANG Xiangyu1,2, XU Chao1,2, HU Ronghai1,2, GUO Minwen1,2
Author information
+
1. Beijing Institute of Control Engineering, Beijing 100190,China;
2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100190,China
Show less
History
+
Received |
Revised |
Published |
21 May 2022 |
24 Jul 2022 |
13 Oct 2022 |
Issue Date |
|
13 Oct 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 李虹琳,党丽芳. 美欧合作的近地小行星防御任务进展[J]. 空间碎片研究,2021,21(2):35-39
LI H L,DANG L F. Progress of U. S.-European joint near-Earth asteroid defense mission[J]. Space Debris Research,2021,21(2):35-39
[2] MCQUAIDE M,ATCHISON J,BELLEROSE J,et al. Double Asteroid Redirection Test (DART) phase D mission design & navigation analysis[C]//2021 IAC Planetary Defense Conference. Vienna,Austria:IAC,2021.
[3] 刘雪奇,孙海彬,孙胜利. 近地小行星防御策略分析[J]. 深空探测学报(中英文),2017,4(6):557-563
LIU X Q,SUN H B,SUN S L. Analysis of defense strategies of near-Earth asteroids[J]. Journal of Deep Space Exploration,2017,4(6):557-563
[4] CHAVEZ A S,MYHRE N J,PRAZENICA R J. Vision-based state estimation for asteroid exploration[C]//2017 AIAA SPACE and Astronautics Forum and Exposition. Orlando,FL:AIAA,2017.
[5] HU R H,HUANG X Y,XU C. Visual navigation with fast landmark selection based on error analysis for asteroid descent stage[J]. Advances in Space Research,2021,68(9):37653780.
[6] KUBOTAA T,HASHIMOTOA T,SAWAI S,et al. An autonomous navigation and guidance system for MUSES-C asteroid landing[J]. Acta Astronautica,2003,52:125-131
[7] TAKAO Y,MIMASU Y,TSUDA Y. Simultaneous estimation of spacecraft position and asteroid diameter during final approach of Hayabusa2 to Ryugu[J]. Astrodynamics,2020,4(2):163-175
[8] VETRISANO M,VASILE M. Autonomous navigation of a spacecraft formation in the proximity of an asteroid[J]. Advances in Space Research,2016,57(8):1783-1804
[9] JIA H,ZHU S Y,CUI P Y. Observability-based navigation using optical and radiometric measurements for asteroid proximity[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,56(4):2677-2688
[10] CROUSE B. Autonomous optical navigation for lunar missions[D]. Houston,TX:Rice University,2009.
[11] OWEN W M. Methods of optical navigation[C]//2011 AAS Spaceflight Mechanics Conference. New Orleans,USA:AIAA,2011.
[12] WRIGHT C A,LIOUNIS A J,ASHMAN B W. Optical navigation algorithm performance[C]//Annual RPI Workshop on Image Based Modeling and Navigation for Space Applications.Troy,NY:AIAA,2018.
[13] BHASKARAN S,RIEDEL J E,SYNNOTT S P. Autonomous nucleus tracking for comet/asteroid encounters:the Stardust example[C]//1998 IEEE Aerospace Conference. Snowmass,USA,March:IEEE,1998.
[14] TAKAHASHI S,SCHEERES D J. Autonomous navigation and exploration of a small near-earth asteroid[C]//2020 AAS/AIAA Astrodynamics Specialist Conference. Lake Tahoe,CA,USA:AIAA,2020.
[15] CHEN Z. Local observability and its application to multiple measurement estimation[J]. IEEE Transactions on Industrial Electronics,1991,38(6):491-496
[16] LI M,MOURIKIS A I. High-precision,consistent EKF-based visual-inertial odometry[J]. The International Journal of Robotics Research,2013,32(6):690-711