PDF(1449 KB)
Special Issue: Small Celestial Body Exploration and Defense
Special Issue: Small Celestial Body Exploration and Defense
Deep Learning Prediction Frame Matching Algorithm of Small Celestial Navigation Landmarks
- XIAO Yang, LI Shuai, WANG Guangze, SHAO Wei, YAO Wenlong
Author information
+
College of Automation and Electronic Engineering, Qingdao University of Science and Technology,Qingdao 266100, China
Show less
History
+
Received |
Revised |
Published |
31 Mar 2022 |
16 Jul 2022 |
13 Oct 2022 |
Issue Date |
|
13 Oct 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 崔平远,贾贺,朱圣英,等. 小天体光学导航特征识别与提取研究进展[J]. 宇航学报,2020,41(7):880-888
CUI P Y,JIA H,ZHU S Y,et al. Research progress on optical navigation feature recognition and extraction technologies for small body exploration[J]. Journal of Astronautics,2020,41(7):880-888
[2] 张荣桥,黄江川,赫荣伟,等. 小行星探测发展综述[J]. 深空探测学报(中英文),2019,6(5):417-423,455
ZHANG R Q,HUANG J C,HE R W,et al. The development overview of asteroid exploration[J]. Journal of Deep Exploration,2019,6(5):417-423,455
[3] 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制:“恐怖”七分钟[M]. 北京:科学出版社,2018.
[4] 崔平远,葛丹桐,朱圣英,等. 行星着陆点自主评估与选取研究进展[J]. 中国科学:技术科学,2021,51(11):1315-1325
CUI P Y,GE D T,ZHU S Y,et al. Research progress of autonomous planetary landing site assessment and selection[J]. Scientia Sinica Technologica,2021,51(11):1315-1325
[5] EMAMI E,AHMAD T,BEBIS G,et al. Crater detection using unsupervised algorithms and convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5373-5383
[6] TIAN Y,YU M,YAO M B,et al. Crater edge-based flexible autonomous navigation for planetary landing[J]. The Journal of Navigation,2019,72(3):649-668
[7] 于正湜,朱圣英,马冬梅,等. 行星表面非规则陨石坑检测与识别方法[J]. 宇航学报,2013,34(3):320-326
YU Z S,ZHU S Y,MA D M,et al. Detection and recognition method for irregular craters on planetary surface[J]. Journal of Astronautics,2013,34(3):320-326
[8] CHRISTOFF N,MANOLOVA A,JORDA L,et al. Morphological crater classification via convolutional neural network with application on MOLA data[C]//Advances in Neural Networks and Applications. St. Konstantin and Elena Resort, Bulgaria:IEEE,2018.
[9] EMAMI E,AHMAD T,BEBIS G,et al. Lunar crater detection via region-based convolutional neural networks[C]//The 49th Lunar and Planetary Science Conference. Woodlands,Texas:LPI,2018.
[10] WANG H,JIANG J,ZHANG G. CraterIDNet:an end-to-end fully convolutional neural network for crater detection and identification in remotely sensed planetary images[J]. Remote Sensing,2018,10(7):1067
[11] RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference. Munich,Germany:Springer,2015.
[12] LEE C. Automated crater detection on mars using deep learning[J]. Planetary and Space Science,2019,170:16-28
[13] CHEN S,LI Y,ZHANG T,et al. Lunar features detection for energy discovery via deep learning[J]. Applied Energy,2021,296:117085
[14] 郑磊,胡维多,刘畅. 基于深度学习的大型陨石坑识别方法研究[J]. 北京航空航天大学学报,2020,46(5):994-1004
ZHENG L,HU W D,LIU C. Large crater identification method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(5):994-1004
[15] FURLÁN F,RUBIO E,SOSSA H,et al. Rock detection in a mars-like environment using a CNN[C]//Mexican Conference on Pattern Recognition. Mexico:Springer,2019.
[16] LI H C,QIU L W,LI Z,et al. Automatic rocks segmentation based on deep learning for planetary rover images[J]. Journal of Aerospace Information Systems,2021,18(11):755-761
[17] SONG J,RONDAO D,AOUF N. Deep learning-based spacecraft relative navigation methods:A survey[J]. Acta Astronautica,2022,191:22-40
[18] KIM C,FUXIN L,ALOTAIBI M,et al. Discriminative appearance modeling with multi-track pooling for real-time multi-object tracking[C]//IEEE International Conference on Computer Vision. Montreal:IEEE,2021.
[19] DAI P,WENG R,CHOI W,et al. Learning a proposal classifier for multiple object tracking[C]//IEEE International Conference on Computer Vision. Montreal:IEEE,2021.
[20] SUN P,CAO J,JIANG Y,et al. Dancetrack:multi-object tracking in uniform appearance and diverse motion[C]//IEEE International Conference on Computer Vision. Changchun,China:IEEE,2022.
[21] CIOPPA A,GIANCOLA S,DELIEGE A,et al. Soccernet-tracking:multiple object tracking dataset and benchmark in soccer videos[C]//IEEE International Conference on Computer Vision. Changchun,China:IEEE,2022.
[22] DANELLJAN M,HÄGER G,KHAN F S,et al. Convolutional features for correlation filter based visual tracking[C]//IEEE International Conference on Computer Vision Workshops. Santiago,Chile:IEEE,2015.
[23] HELD D,THRUN S,SAVARESE S. Learning to track at 100 fps with deep regression networks[C]//14th European Conference on Computer Vision. Amsterdam,The Netherlands:Springer,2016.
[24] DANELLJAN M,HÄGER G,KHAN F,et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference. Nottingham,UK:BMVA Press,2014.
[25] ZHOU X,YIN T,KOLTUN V,et al. Global tracking transformers[C]//IEEE International Conference on Computer Vision. Changchun,China:IEEE,2022.
[26] POSSEGGER H,MAUTHNER T,BISCHOF H. In defense of color-based model-free tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago,Chile:IEEE,2015.
[27] 邵巍,郗洪良,王光泽,等. 暗弱环境下小天体陨石坑智能检测算法[J]. 宇航学报,2021,42(11):1439-1445
SHAO W,XI H L,WANG G Z,et al. An intelligent detection algorithm for small body craters in faint environment[J]. Journal of Astronautics,2021,42(11):1439-1445