Robust Landmark Matching Method for Visual Navigation Near Small Bodies

HU Ronghai1,2, HUANG Xiangyu1,2, XU Chao1,2

PDF(5464 KB)
PDF(5464 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (4) : 407-416. DOI: 10.15982/j.issn.2096-9287.2022.20220019
Special Issue: Small Celestial Body Exploration and Defense
Special Issue: Small Celestial Body Exploration and Defense

Robust Landmark Matching Method for Visual Navigation Near Small Bodies

  • HU Ronghai1,2, HUANG Xiangyu1,2, XU Chao1,2
Author information +
History +

Abstract

A robust and efficient landmark matching algorithm was proposed in this paper to deal with the extreme environment near the target asteroid. First,the matching error of the landmark generated by the SPC (StereoPhotoClinometry) technology was analyzed,and the influence of landmark position error and cameras’ pose error on the matching results was discussed. Then,based on the error analysis,the optimal landmark points were selected,and a weighted normalized cross-correlation (WNCC) algorithm was proposed to obtain accurate matching results robustly and efficiently. Finally,high-fidelity synthetic image sequences were generated to compare the performance of WNCC and the widely used NCC (Normalized Cross-Correlation) algorithm in the previous asteroid missions under a wide range of image scales,viewing geometries, and lighting conditions. The numerical results demonstrate the advance of the proposed method in terms of efficiency,robustness,and accuracy.

Keywords

small bodies exploration / visual navigation / robust landmark matching / weighted normalized cross-correlation / error analysis

Cite this article

Download citation ▾
HU Ronghai, HUANG Xiangyu, XU Chao. Robust Landmark Matching Method for Visual Navigation Near Small Bodies. Journal of Deep Space Exploration, 2022, 9(4): 407‒416 https://doi.org/10.15982/j.issn.2096-9287.2022.20220019

References

[1] BAOYIN H X,LI J F. A survey on orbital dynamics and navigation of asteroid missions[J]. Acta Mechanica Sinica,2014,30(3):282-293
[2] ANTHONY N,EMAMI M R. Asteroid engineering:the state-of-the-art of near-Earth asteroids science and technology[J]. Progress in Aerospace Sciences,2018,100:1-17
[3] GE D T,CUI P Y,ZHU S Y. Recent development of autonomous GNC technologies for small celestial body descent and landing[J]. Progress in Aerospace Sciences,2019,110:100551
[4] 张荣桥,黄江川,赫荣伟,等. 小行星探测发展综述[J]. 深空探测学报(中英文),2019,6(5):417-423,455
ZHANG R Q,HUANG J C,HE R W,et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration,2019,6(5):417-423,455
[5] VEVERKA J,FARQUHAR B,ROBINSON M,et al. The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros[J]. Nature,2001,413(6854):390-393
[6] KAWAGUCHI J. The Hayabusa mission—its seven years flight[C]//IEEE Symposium on VLSI Circuits, Digest of Technical Papers. [S. l.]:IEEE,2011.
[7] STEFAAN V W,YUICHI T,KENT Y,et al. Prearrival deployment analysis of rovers on Hayabusa 2 asteroid explorer[J]. Journal of Spacecraft & Rockets,2018,55(4):797-817
[8] ERIC J,THIERRY M,ELISABET C,et al. Rosetta lander Philae:flight dynamics analyses for landing site selection and post-landing operations[J]. Acta Astronautica,2016,125:65-79
[9] GALEDD J,CHEUVRONT A. The OSIRIS-REx asteroid sample return mission[C]// Aerospace Conference. [S. l. ]:IEEE,2013.
[10] MOURIKIS A,TRAWNY N,ROUMELIOTIS S,et al. Vision-aided inertial navigation for spacecraft entry,descent,and landing[J]. IEEE Transactions on Robotics,2009,25(2):264-280
[11] 崔平远,贾贺,朱圣英,等. 小天体光学导航特征识别与提取研究进展[J]. 宇航学报,2020,41(7):880-888
CUI P Y,JIA H,ZHU S Y,et al. Research progress on optical navigation feature recognition and extraction technologies for small body exploration[J]. Journal of Astronautics,2020,41(7):880-888
[12] LOWE D G. Object recognition from local scale-invariant features[C]// Proceedings of IEEE International Conference on Computer Vision. [S. l. ]:IEEE,1999.
[13] BAY H,TUYTELAARS T,GOOL L V. SURF:speeded up robust features [C]// Proceedings of the 9th European Conference on Computer Vision - Volume Part I. Berlin:Springer-Verlag,2006.
[14] RUBLEE E,RABAUD V,KONOLIGE K,et al. ORB:an efficient alternative to SIFT or SURF[C]// IEEE International Conference on Computer Vision,ICCV 2011. Barcelona,Spain:IEEE,2011.
[15] 崔平远,冯军华,朱圣英,等. 基于三维地形匹配的月球软着陆导航方法研究[J]. 宇航学报,2011,32(3):470-476
CUI P Y,FENG J H,ZHU S Y,et al. 3D terrain feature matching based navigation for lunar soft landing[J]. Journal of Astronautics,2011,32(3):470-476
[16] 邵巍,陈海燕,孟琳,等. 基于鲁棒曲线匹配的星表特征跟踪方法[J]. 深空探测学报(中英文),2014,1(1):75-80
SHAO W,CHEN H Y,MENG L,et al. Planetary terrain features tracking method based on robust curve matching[J]. Journal of Deep Space Exploration,2014,1(1):75-80
[17] 王光泽,邵巍,郗洪良,等. 小天体表面纹理曲线精准匹配算法[J]. 深空探测学报(中英文),2021,8(3):306-314
WANG G Z,SHAO W,XI H L,et al. Accurate matching algorithm of small celestial body surface texture curve[J]. Journal of Deep Space Exploration,2021,8(3):306-314
[18] BILODEAU V S,NEVEU D,BRUNEAU D S,et al. Pinpoint lunar landing navigation using crater detection and matching:design and laboratory validation[C]// AIAA Guidance,Navigation,and Control Conference. [S. l. ]:AIAA,2012.
[19] 冯军华,崔祜涛,崔平远,等. 行星表面陨石坑检测与匹配方法[J]. 航空学报,2010,31(9):1858-1863
FENG J H,CUI H T,CUI P Y,et al. Autonomous crater detection and matching on planetary surface[J]. Acta Aeronautica et Astronautica Sinca,2010,31(9):1858-1863
[20] 邵巍,郗洪良,王光泽,等. 暗弱环境下小天体陨石坑智能检测算法[J]. 宇航学报,2021,42(11):1439-1445
SHAO W,XI H L,WANG G Z,et al. An intelligent detection algorithm for small body craters in faint environment[J]. Journal of Astronautics,2021,42(11):1439-1445
[21] ZHU S Y,XIU Y,ZHANG N,et al. Crater-based attitude and position estimation for planetary exploration with weighted measurement uncertainty[J]. Acta Astronautica,2020,176:216-232
[22] SHAO W,XIE J,CAO L,et al. Crater matching algorithm based on feature descriptor[J]. Advances in Space Research,2019,65(1):616-629
[23] MORITA H,SHIRAKAWA K,KUBOTA T,et al. Hayabusa's real-time landmark tracking navigation for descents and touching-downs[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. [S. l. ]:AIAA,2006.
[24] TERUI F,OGAWA N,ONO G,et al. Guidance,navigation,and control of Hayabusa 2 touchdown operations[J]. Astrodynamics,2020,4(4):393-409
[25] SANTAYANA R P,LAUER M. Optical measurements for Rosetta navigation near the comet[C]//Proceedings of the 25th International Symposium on Space Flight Dynamics(ISSFD). Munich:[s. n. ],2015.
[26] WILLIANMS B,ANTREASIAN P,CARRANZA E,et al. OSIRIS-REx flight dynamics and navigation design[J]. Space Science Reviews,2018,214(4):69
[27] GASKELL R W,BARNOUIN-JHA O S,SCHEERES D J,et al. Characterizing and navigating small bodies with imaging data[J]. Meteoritics & Planetary Science,2008,43(6):1049-1061
PDF(5464 KB)

Accesses

Citations

Detail

Sections
Recommended

/