Ground Simulation Test of Penetrator for Lunar Soil Exploration

SUN Miao1, ZHANG Hongyu1, CHI Runqiang1, PANG Baojun1, XIAO Junxiao2, FAN Jinbiao3, QIAN Cheng4, LU Zixiao5, JIANG Shengyuan2

PDF(4832 KB)
PDF(4832 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (2) : 141-149. DOI: 10.15982/j.issn.2096-9287.2022.20210149
Topic:Sampling and Detection Technology of Icy Lunar Regolith

Ground Simulation Test of Penetrator for Lunar Soil Exploration

  • SUN Miao1, ZHANG Hongyu1, CHI Runqiang1, PANG Baojun1, XIAO Junxiao2, FAN Jinbiao3, QIAN Cheng4, LU Zixiao5, JIANG Shengyuan2
Author information +
History +

Abstract

The lunar surface is mostly covered with fine-grained powdered regolith. Penetration tests are carried out on the full-scale penetrator penetrating at 100 ~ 260 m/s into three types of simulated lunar soil samples,to study the impact resistance of penetrator structure and scientific devices,the penetration resistance and identification of different cross-sectional structures,and the perturbation intensity after penetration. The test results show that the penetrator structure was intact and worked well under an overload of about 30 000 g. When the penetrator penetrated the simulated sample target of lunar soil without hard layers,the peak value of the overload after filtering was about 1 000 g. When the penetrator penetrated the simulated samples target of lunar rock or water-ice,the overload peak after filtering was more than five times that of lunar soil without hard layers. The missile-borne recorder could identify the layered samples of different strengths; at the end of the trajectory,the granular simulated sample target within about 20 mm from the penetrator showed disturbance and fragmentation,and the median granular size was reduced by about 70% at most. The lunar surface is usually covered by fine-grained powdered regolith and the penetrator can realize subsurface lunar soil detection. The results will provide the reference for the design of detectors in the fourth phase of lunar exploration project.

Keywords

penetrator / lunar soil simulant / water ice / particle breakage

Cite this article

Download citation ▾
SUN Miao, ZHANG Hongyu, CHI Runqiang, PANG Baojun, XIAO Junxiao, FAN Jinbiao, QIAN Cheng, LU Zixiao, JIANG Shengyuan. Ground Simulation Test of Penetrator for Lunar Soil Exploration. Journal of Deep Space Exploration, 2022, 9(2): 141‒149 https://doi.org/10.15982/j.issn.2096-9287.2022.20210149

References

[1] DACHWALD B,ULAMEC S,POSTBERG F,et al. Key technologies and instrumentation for subsurface exploration of ocean worlds[J]. Space Science Reviews,2020,216(5):1-45
[2] COLAPRETE A,SCHULTZ P,HELDMANN J,et al. Detection of water in the LCROSS ejecta plume[J]. Science,2010,330(6003):463-468
[3] SAIKI T,SAWADA H,OKAMOTO C,et al. Small carry-on impactor of Hayabusa 2 mission[J]. Acta Astronautica,2013,84:227-236
[4] TSUDA Y,YOSHIKAWA M,ABE M,et al. System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362
[5] ARAKAWA M,SAIKI T,WADA K,et al. An artificial impact on the asteroid(162173)Ryugu formed a crater in the gravity-dominated regime[J]. Science,2020,368(6486):67-71
[6] KELLER H U,JORDA L,KUPPERS M,et al. Deep impact observations by OSIRIS onboard the Rosetta Spacecraft[J]. Science,2005,310(5746):281-283
[7] CHENG A F,MICHEL P,JUTZI M,et al. Asteroid impact & deflection assessment mission:kinetic impactor[J]. Planetary and Space Science,2016,121:27-35
[8] SAIKI T,IMAMURA H,ARAKAWA M,et al. The small carry-on impactor(SCI)and the Hayabusa 2 impact experiment[J]. Space Science Reviews,2017,208(1-4):165-186
[9] LORENZ R D. Planetary penetrators:their origins,history and future[J]. Advances in Space Research,2011,48(3):403-431
[10] LORENZ R D,MOERSCH J E,STONE J A,et al. Penetration tests on the DS-2 Mars microprobes:penetration depth and impact accelerometry[J]. Planetary and space science,2000,48(5):419-436
[11] SURKOV Y A,KREMNEV R S. Mars-96 mission:Mars exploration with the use of penetrators[J]. Planetary and space science,1998,46(11):1689-1696
[12] SHIRAISHI H,TANAKA S,FUJIMURA A,et al. The present status of the Japanese penetrator mission:LUNAR-A[J]. Advances in Space Research,2008,42(2):386-393
[13] GOWEN R,SMITH A,WINTER B. An update on MoonLITE[C]//Proceedings of the 59th IAC International Astronautical Congress. Glasgow:IAC,2008.
[14] YOUNG C W. Penetration equations:SAND97-2426[R]. Albuquerqu:Sandia Labs,1997.
[15] FORRESTAL M J,LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering,1992,3(12):427-444
[16] FORRESTAL M J,TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures,1997,31-32(34):4127-4146
[17] FORRESTAL M J,FREW D J,HICKERSON J P,et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering,2003,28(5):479-497
[18] 刘润涛. 星壤撞击器侵彻特性及其影响因素研究[D]. 哈尔滨:哈尔滨工业大学,2017.
LIU R T. Research on penetration characteristics and influencing factors of asteroid soil penetrator[D]. Harbin:Harbin Institute of Technology,2017.
[19] 蒋建伟,门建兵,万丽珍,等. 动能弹侵彻土壤混凝土复合介质的试验研究[J]. 北京理工大学学报,2001,21(4):420-423
JIANG J W,MEN J B,WAN L Z,et al. Experimental study on a kinetic energy penetrator penetrating a soil-and-concrete multi-Layer target[J]. Journal of Beijing Institute of Technology,2001,21(4):420-423
[20] AHRENS C J,PAIGE D A,EUBANKS T M,et al. Small penetrator instrument concept for the advancement of lunar surface science[J]. The Planetary Science Journal,2021,2(1):38
[21] 蒋东,史文卿,黄瑞源,等. 高速/超高速侵彻的尺度效应及相似规律[J]. 中国科学:物理学力学天文学,2021,51(10):106-113
JIANG D,SHI W Q,HUANG R Y,et al. Scale effects and similarity laws on high/hypervelocity impact penetration[J]. Scientia Sinica Physica,Mechanica Sciencechina Physics, Mechanics Astronomy,2021,51(10):106-113
[22] ATKINSON J,ZACNY K. Mechanical properties of icy lunar regolith:application to ISRU on the Moon and Mars[C]//16th Biennial International Conference on Engineering,Science,Construction,and Operations in Challenging Environments. Cleveland,Ohio:ASCE,2018.
[23] 李尚昆,冯晓伟,谢若泽,等. 高应变率下纯水冰和杂质冰的动态力学行为[J]. 爆炸与冲击,2019,39(9):76-83
LI S K,FENG X W,XIE R Z,et al. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates[J]. Explosion and Shock Waves,2019,39(9):76-83
[24] GERTSCH L,GUSTAFSON R,GERTSCH R. Effect of water ice content on excavatability of lunar regolith[C]//AIP Conference Proceedings,American Institute of Physics. [S. l. ]:AIP,2006.
[25] 李玲玲,范锦彪,王燕. 弹体侵彻过程中刚体过载实时提取的滤波方法[J]. 中国测试,2015,41(11):106-109
LI L L,FAN J B,WANG Y. Filtering method for real-time extraction of rigid body overload in penetration process[J]. China Measurement & Test,2015,41(11):106-109
[26] 范锦彪,祖静,徐鹏,等. 弹丸侵彻混凝土目标减加速度信号的处理原则[J]. 探测与控制学报,2012,34(4):1-5,9
FAN J B,ZU J,XU P,et al. Impact deceleration signal processing for concrete target penetration[J]. Journal of Detection & Control,2012,34(4):1-5,9
[27] ALLEN W A,MAYFIELD E B,MORRISON H L. Dynamics of a projectile penetrating sand[J]. Journal of Applied Physics,1957,28(3):370-376
[28] COOPER W L,BREAUX B A. Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops[J]. International Journal of Fracture,2010,162(1-2):137-150
[29] GL??NER C,MOSER S,KüLLS R,et al. Instrumented projectile penetration testing of granular Materials[J]. Experimental Mechanics,2017,57(2):261-272
[30] LAINE L,LARSEN O P. Implementation of equation of state for dry sand in Autodyn[C]//83rd Shock and Vibration Symposium. New Orleans,Louisiana:[s. n. ],2012.
PDF(4832 KB)

Accesses

Citations

Detail

Sections
Recommended

/