PDF(1463 KB)
Identification Method of Fatigue Load Characteristics for Reusable Launch Vehicle Engine Based on Gaussian Distribution
- XU Zhenliang1, DENG Sichao1, YIN Zhiping2, LUO Jie2, WU Shengbao1
Author information
+
1. Research & Development Department, China Academy of Launch Vehicle Technology, Beijing 100076, China;
2. Dept. Civil Aviation, Northwest University of Technology, Xi’an 710072, China
Show less
History
+
Received |
Revised |
Published |
03 Dec 2021 |
17 Feb 2022 |
06 Jan 2023 |
Issue Date |
|
20 Oct 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 韩增尧,邹元杰,朱卫红,等. 航天器力学环境分析与试验技术研究进展[J]. 中国科学 (物理学力学天文学),2019,49(2):6-22
HAN Z Y,ZOU Y J,ZHU W H,et al. Evolution of the spacecraft mechanical environment predication & test technology[J]. Scientia Sinica (Physica,Mechanica & Astronomica),2019,49(2):6-22
[2] 胡雷,胡茑庆,秦国军,等. 涡轮泵状态监控及传感器故障识别的新异类检测方法[J]. 国防科技大学学报,2010,32(2):119-123
HU L,HU Y Q,QIN G J,et al. Novelty detection in turbopump condition monitoring and sensor fault recognition[J]. Journal of National University of Defense Technology,2010,32(2):119-123
[3] HU L,HU N,ZHNAG X,et al. Novelty detection methods for online health monitoring and post data analysis of turbopumps[J]. Journal of Mechanical Science and Technology,2013,27(7):1933-1942
[4] AISWARYA N,PRIYADHARSINI S S,MONI K S. An efficient approach for the diagnosis of faults in turbo pump of liquid rocket engine by employing FFT and time-domain features[J]. Australian Journal of Mechanical Engineering,2018,16(3):163-172
[5] 张炜,张玉祥,黄先祥. 基于神经网络的涡轮泵多故障诊断[J]. 推进技术,2003,24(1):17-20,39
ZHAN W,ZHANG Y X,HUANG X X. Multi-fault diagnosis for turbo-pump based on neural network[J]. Journal of Propulsion Technology,2003,24(1):17-20,39
[6] 李雷,谢立,张永杰,等. 数据挖掘在运载火箭智能测试中的应用[J]. 航空学报,2018,39(S1):86-93
LI L,XIE L,ZHNAG Y J,et al. Application of data mining in intelligence test of launch vehicles[J]. Acta Aeronautica et Astronautica Sinica,2018,39(S1):86-93
[7] 李旭娟,缪炳荣,李国芳,等. 基于结构动态响应的载荷识别研究[J]. 机械制造与自动化,2018,47(1):93-96
LI X J,MIAO B R,LI G F,et al. Research on load identification based on structural dynamic response[J]. Machine Building & Automation,2018,47(1):93-96
[8] 杜晓坤,王栋梁,何顺杰,. 运输类飞机实测载荷飞行任务段划分算法[J]. 科学技术与工程,2017,17(30):352-355
DU X K,WANG D L,HE S J,et al. Division algorithm for flight mission segment of transport aircraft measured load[J]. Science Technology and Engineering,2017,17(30):352-355
[9] 陈亮,洪海明,张音旋. 无人作战飞机载荷谱编制方法[J]. 飞机设计,2017,17(30):352-355
CHEN L,HONG H M,ZHANG Y X. Analysis on technology of load spectrum for unmanned combat aerial vehicle[J]. Aircraft Design,2017,17(30):352-355
[10] 胡雷. 涡轮泵试车数据分析及新异类检测技术研究[D]. 长沙:国防科学技术大学,2005.
HU L. Fault analysis of turbopump test data using novelty detection technology[D]. Changsha:National University of Defense Technology,2005.
[11] KILLICK R,FEARNHEAD P,ECKLEY I A. Optimal detection of changepoints with a linear computational cost[J]. Journal of the American Statistical Association,2012,107(500):1590-1598
[12] GRIFFIN D,LIM J. Signal estimation from modified short-time fourier transform[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1984,32(2):236-243
[13] 姚卫星. 结构疲劳寿命分析[M]. 北京:科学出版社,2019:69-72.
[14] 金德新. 改进的雨流计数法应用于随机载荷下的寿命预测[J]. 鞍钢技术,2000(5):55-57
JIN D X. Life prediction of improved rain flow counting method applied under random load[J]. Angang Technology,2000(5):55-57
[15] 蒋祖国,田丁栓,周占廷. 飞机结构载荷/环境谱[M]. 北京:电子工业出版社,2012.
[16] 孙百红,田川. 基于特征频段RMS值的发动机故障实时监测方法[J]. 火箭推进,2019,45(4):74-78
SUN B H,TIAN C. The fault real-time monitoring method for engine based on RMS value of characteristic frequency band[J]. Journal of Rocket Propulsion,2019,45(4):74-78