System Design and Experimental Verification of Mobile Lunar Lander

JIA Shan1,2,3, ZHOU Xianghua1, CHEN Jinbao1,2,3, WANG Yongbin1,4, ZHAO Jianhua1, ZHANG Sheng1

PDF(3550 KB)
PDF(3550 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (1) : 29-41. DOI: 10.15982/j.issn.2096-9287.2022.20210141
Special Issue:Technology and Application of Deep Space Exploration
Special Issue:Technology and Application of Deep Space Exploration

System Design and Experimental Verification of Mobile Lunar Lander

  • JIA Shan1,2,3, ZHOU Xianghua1, CHEN Jinbao1,2,3, WANG Yongbin1,4, ZHAO Jianhua1, ZHANG Sheng1
Author information +
History +

Abstract

A mobile lunar lander was proposed to address the problem that the conventional surface lander, which cannot actively adjust attitude and flexibly roam, is not suitable for future missions such as large-scale surface exploration and surface base construction. Firstly, the system composition of the mobile lunar lander and the composition of each subsystem were introduced. Secondly, the functions and implementation of the variable configuration body and the buffering/driving integrated buffer were introduced. Thirdly, a kinematic model of the buffering/walking integrated leg-foot mechanism was established, the walking gait and turning gait with fewer posture adjustment times were designed, and the trajectories of the joints of the leg-foot mechanism under the conditions of foot-end stepping and whole-unit posture adjustment were planned. The gait simulation was completed by building a virtual prototype model of the whole machine. Finally, a walking test prototype was developed and a test auxiliary facility was built, and the walking gait experiment was completed. The results show that the proposed mobile lander gait design is reasonable, the motion trajectory of the active drive joints is smooth and supple, the lander body has no large undulation and deflection during the movement, the walking speed can reach 0.01m/s, and the turning speed can reach 0.6°/s.

Keywords

mobile lander / kinematics / gait planning / prototype test

Cite this article

Download citation ▾
JIA Shan, ZHOU Xianghua, CHEN Jinbao, WANG Yongbin, ZHAO Jianhua, ZHANG Sheng. System Design and Experimental Verification of Mobile Lunar Lander. Journal of Deep Space Exploration, 2022, 9(1): 29‒41 https://doi.org/10.15982/j.issn.2096-9287.2022.20210141

References

[1] 陈金宝,聂宏,陈传志,等. 载人登月舱设计及若干关键技术研究[J]. 宇航学报,2014,35(2):125-136
CHEN J B,NIE H,CHEN C Z,et al. Design and key techniques for lunar lander system of manned lunar landing[J]. Journal of Astronautics,2014,35(2):125-136
[2] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文). 2016,3(4):307-314.
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333.
[3] 于登云,吴学英,吴伟仁. 我国探月工程技术发展综述[J]. 深空探测学报(中英文), 2016,3(4):307-314.
YU D Y,WU X Y,WU W R. Review of technology development for Chinese lunar exploration program[J]. Journal of Deep Space Exploration,2016,3(4):307-314.
[4] 徐西宝,白成超,陈宇燊,等. 月/火探测软着陆制导技术发展综述[J]. 宇航学报,2020,41(6):719-729
XU X B,BAI C C,CHEN Y S,et al. A survey of guidance technology for Moon/Mars soft landing[J]. Journal of Astronautics,2020,41(6):719-729
[5] WILCOX B H. ATHLETE:A mobility and manipulation system for the moon[C]//IEEE Aerospace Conference. Piscataway,USA:IEEE,2007. DOI:10.1109/AERO.2007.352726.
[6] BENTON M G. Conceptual design of crew exploration lander for asteroid ceres and Saturn moons rhea and Iapetus[C]//The 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston,USA:AIAA,2010.
[7] BIRCKENSTAEDT B,HOPKINS J,KUTTER B,et al. Lunar lander configurations incorporating accessibility,mobility,and centaur cryogenic propulsion experience[C]//Space. Reston,USA:AIAA. 2006:842-853.
[8] 张志贤,梁鲁,果琳丽,等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天,2016,22(2):202-209
ZHANG Z X,LIANG L,GUO L L,et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight,2016,22(2):202-209
[9] HAN Y C,GUO W Z. Novel design of the actuation-transmission system for legged mobile lander considering large impact[J]. Advances in Mechanism and Machine Science, 2019,73:1859-1868.
[10] HAN Y C,GUO W Z,PENG Z K,et al. Dimensional synthesis of the reconfigurable legged mobile lander with multi-mode and complex mechanism topology[J]. Mechanism and Machine Theory,2020,155:104097
[11] 佟振鸣. 移动式着陆探测机器人构型设计与行走规划研究[D]. 上海:上海交通大学,2016.
TONG Z M. On configuration design and gait planning of mobile exploration lander[D]. Shanghai:Shanghai Jiao Tong University,2006.
[12] 秦日鹏,徐坤,陈佳伟,等. 一种星球探测六足轮腿机器人的设计与运动规划[J]. 航空学报,2021,42(1):524244
QIN R P,XU K,CHEN J W,et al. Design and motion planning of wheel-legged hexapod robot for planetary exploration[J]. Acta Aeronautica et Astronautica Sinica,2021,42(1):524244
[13] GONCALVES R,CARVALHO J. Review and latest trends in mobile robots used on power transmission lines[J]. International Journal of Advanced Robotic Systems,2013,10(1):1-14
[14] 张元勋,黄靖,韩亮亮. 星表移动探测机器人研究现状综述[J]. 航空学报,2021,42(1):523909
ZHANG Y X,HUANG J,HAN L L. Research status of planetary surface mobile exploration robots:review[J]. Acta Aeronautica et Astronautica Sinica,2021,42(1):523909
[15] CHEN Z H,WANG S K,WANG J Z,et al. Control strategy of stable walking for a hexapod wheel-legged robot[J]. ISA Transactions,2020,108:367-380
[16] BISWAL P,MOHANTY P K. Development of quadruped walking robots:a review[J]. Ain Shams Engineering Journal,2020,12(2):1-15
[17] 陈志华,汪首坤,王军政,等. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人,2020,42(5):534-549
CHEN Z H,WANG S K,WANG J Z,et al. Motion drive and multi-mode control method of an electric parallel six wheel-legged robot[J]. Robot,2020,42(5):534-549
[18] 叶鹏达,尤晶晶,仇鑫,等. 并联机器人运动性能的研究现状及发展趋势[J]. 南京航空航天大学学报,2020,255(3):27-41
YE P D,YOU J J,QIU X,et al. Status and development trend of motion performance in parallel robot[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,255(3):27-41
[19] 郝仁剑,王军政,史大威,等. 基于速度矢量的四足机器人间歇步态规划方法[J]. 机器人,2016,38(5):540-549
HAO R J,WANG J Z,SHI D W,et al. Intermittent gait planning method of quadruped robot based on velocity vector[J]. Robot,2016,38(5):540-549
[20] 李力. 具有强越障能力的六足轮腿式爬行机器人[D]. 南京:南京航空航天大学,2019.
LI L. A novel wheel-legged hexapod robot with strong obstacle-crossing ability[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019.
[21] KOO I M,TRAN D T,LEE Y H,et al. Development of a quadruped walking robot AiDIN-III using biologically inspired kinematic analysis[J]. International Journal of Control,Automation & Systems,2013,11(6):1276-1289
[22] 常青,韩宝玲,乔志霞,等. 四足机器人斜坡运动的自适应控制算法[J]. 北京理工大学学报,2019,39(9):900-906
CHANG Q,HAN B L,QIAO Z X,et al. An adaptive control algorithm for quadruped robot trotting on a slope[J]. Transactions of Beijing Institute of Technology,2019,39(9):900-906
[23] FUKUOKA Y,KIMURA H. Dynamic locomotion of a biomorphic quadruped ‘Tekken’ robot using various gaits:walk,trot,free-gait and bound[J]. Applied Bionics & Biomechanics,2014,6(1):63-71
[24] 张文佳,尚伟伟. 2自由度绳索牵引并联机器人的高速点到点轨迹规划方法[J]. 机械工程学报,2016,52(3):1-8.
ZHANG W J,SHANG W W. Hign-speed point-to-point trajectory planning of a 2-DOF cable driven parallel manipulator[J]. Journal of Mechanical Engineering,2016,52(3):1-8.
[25] 马宇豪,梁雁冰. 一种基于六次多项式轨迹规划的机械臂避障算法[J]. 西北工业大学学报,2020,38(2):392-400
MA Y H,LIANG Y B. An obstacle avoidance algorithm for manipulators based on six-order polynomial trajectory planning[J]. Journal of Northwestern Polytechnical University,2020,38(2):392-400
[26] LI Y H,HUANG T,CHETWYND D G. An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines[J]. Mechanism and Machine Theory,2018,126:479-490
[27] 陈栋,李世其,王俊峰,等. 并联机构的运动学多目标轨迹规划方法[J]. 机械工程学报,2019,55(15):163-173.
CHEN D,LI S Q,WANG J F,et al. Method of multi-objective trajectory planning of parallel mechanism based on the kinematics[J]. Journal of Mechanical Engineering,2019,55(15):163-173.
[28] ZHONG G L,DENG H. Dynamic hybrid control of a hexapod walking robot:experimental verification[J]. IEEE Transactions on Industrial Electronics,2016,63(8):5001-5011
[29] 贾山,周向华,陈金宝,等. 缓冲/行走一体化着陆器运动学研究与步态规划[J]. 宇航学报,2021,42(4):10-19
JIA S,ZHOU X H,CHEN J B,et al. Kinematics research and gait planning of buffering/walking integrated lander[J]. Journal of Astronautics,2021,42(4):10-19
[30] 贾山,钱佳程,陈金宝,等. 基于多级铝蜂窝缓冲器的新型着陆器性能分析[J]. 上海航天(中英文),2021(2):87-97
JIA S,QIAN J C,CHEN J B,et al. Performance analysis of a new lander based on Multi-level aluminum honeycomb buffer[J]. Aerospace Shanghai(Chinese& English),2021(2):87-97
[31] 冷舒,吴克,居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报,2019,40(11):1262-1273
LENG S,WU K,JU H H,et al. Overview of manipulator kinematics modeling and solving method[J]. Journal of Astronautics,2019,40(11):1262-1273
[32] 卢文娟,郑旭,荣令魁,等. 一种基于角度传感器的6-UPS机构正向运动学分析方法[J]. 机器人,2020,42(5):550-556
LU W J,ZHENG X,RONG L H,et al. A Method for forward kinematics analysis of 6-UPS mechanism based on angle sensor[J]. Robot,2020,42(5):550-556
[33] 徐文福,张金涛,闫磊,等. 偏置式冗余空间机械臂逆运动学求解的参数化方法[J]. 宇航学报,2015,36(1):33-39
XU W F,ZHANG J T,YAN L,et al. Parameterized inverse kinematics resolution method for a redundant space manipulator with link offset[J]. Journal of Astronautics,2015,36(1):33-39
[34] CRAIG J J. Introduction to robotics:mechanics and control[J]. Pearson Education,Inc,1986,23(2):116-124.
[35] 牛厂磊,罗志福,雷英俊,等. 深空探测先进电源技术综述[J]. 深空探测学报(中英文),2020,7(1):24-34
NIU C L,LUO Z F,LEI Y J,et al. Advanced power source technology of deep exploration[J]. Journal of Deep Space Exploration,2020,7(1):24-34
PDF(3550 KB)

Accesses

Citations

Detail

Sections
Recommended

/