PDF(2978 KB)
Analysis of High Resolution SAR Data and Selection of Landing Sites in the Permanently Shadowed Region on the Moon
- LIU Niutao, SHI Xianzheng, XU Feng, JIN Yaqiu
Author information
+
Key Laboratory of Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200438, China
Show less
History
+
Received |
Revised |
Published |
19 Nov 2021 |
28 Dec 2021 |
20 Jan 2022 |
Issue Date |
|
20 Feb 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] ZOU Y,LIU Y,JIA Y. Overview of china’s upcoming Chang’E series and the scientifc objectives and payloads for Chang’E-7 mission[C]//The 51st Lunar and Planetary Science Conference. Woodlands,USA:2020.
[2] 吴伟仁,于登云,王赤,等. 月球极区探测的主要科学与技术问题研究[J]. 深空探测学报(中英文),2020,7(3):223-231
WU W R,YU D Y,WANG C,et al. Research on the main scientific and technological issues on lunar polar exploration[J]. Journal of Deep Space Exploration,2020,7(3):223-231
[3] 法文哲,徐丰,金亚秋. 基于不规则三角网格剖分的非均匀起伏月球表面SAR成像模拟[J]. 中国科学(F辑:信息科学),2009,39(2):185-198.
FA W Z,XU F,JIN Y Q. SAR imaging simulation for an inhomogeneous undulated lunar surface based on triangulated irregular network[J]. Science In China(Series F:Information Sciences),2009,39(2):185-198.
[4] RANEY R K,SPUDIS P D,BUSSEY B,et al. The lunar Mini-RF radars:hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE,2010,99(5):808-829
[5] LIU N,YE H,JIN Y Q. Dielectric inversion of lunar PSR media with topographic mapping and comment on “quantification of water ice in the Hermite—a crater of the lunar north pole”'[J]. IEEE Geoscience & Remote Sensing Letters,2017,14(9):1444-1448
[6] LIU N,FA W,JIN Y Q. No water-ice invertable in PSR of Hermite—a crater based on Mini-RF data and two-layers model[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(10):1485-1489
[7] LIU N, JIN Y, Q. Selection of a landing site in the permanently shadowed portion of lunar polar regions using DEM and Mini-RF data [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503305.
[8] LIU N,XU F,JIN Y Q. Anomaly detection in permanently shadowed region at lunar polar using fully polarimetric SAR data of Chandrayanan-2 [J/OL]. IEEE Geoscience and Remote Sensing Letters, 2021, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36.
[9] LIU N,XU F,JIN Y Q. A Numerical model of CPR of rough surface with discrete scatterers for analysis of Mini-RF data[J]. Radio Science,2020,55(5): e2018RS006776.
[10] LIU N, JIN Y Q. Simulation of Pol-SAR imaging and data analysis of Mini-RF observation from the lunar surface [J]. IEEE Transactions on Geoscience and Remote Sensing,2021, 60: 2000411.
[11] SPUDIS P D,BUSSEY D B J,BALOGA S M,et al. Evidence for water ice on the Moon:results for anomalous polar craters from the LRO Mini‐RF imaging radar[J]. Journal of Geophysical Research:Planets,2013,118(10):2016-2029
[12] FA W,CAI Y. Circular polarization ratio characteristics of impact craters from Mini-RF observations and implications for ice detection at the polar regions of the Moon[J]. Journal of Geophysical Research:Planets,2013,118(8): 1582-1608.
[13] CAMPBELL B A. High circular polarization ratios in radar scattering from geologic targets [J]. Journal of Geophysical Research,2012,117(E6):E06008.
[14] CALLA O P N,MATHUR S,GADRI K L. Quantification of water ice in the Hermite—a crater of the lunar north pole[J]. IEEE Geoscience and Remote Sensing Letters,2016,13:926-930
[15] KUMAR A, KOCHAR I M, PANDEY D K, et al. Dielectric constant estimation of lunar surface using Mini-RF and Chandrayaan-2 SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4600608.
[16] FASSETT C I,KING I R,NYPAVER C A,et al. Temporal evolution of S-band circular polarization ratios of kilometer-scale craters on the lunar maria[J]. Journal of Geophysical Research,2018,123:3133-3143
[17] LIU J,REN X,YAN W,et al. Descent trajectory reconstruction and landing site positioning of Chang’E-4 on the lunar farside[J]. Nature Communication,2019,10:4229
[18] 金亚秋,法文哲. 行星微波遥感理论方法与应用[M]. 北京:科学出版社,2019.
[19] SHI X,FU S,CHEN J,et al. Object-level semantic segmentation on the high-resolution Gaofen-3 FUSAR-Map dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14(5):3107-3119
[20] RANEY R K,CAHILL J T S,PATTERSON G W,et al. The m-chi decomposition of hybrid dual‐polarimetric radar data with application to lunar craters[J]. Journal of Geophysical Research:Planets,2012,117(E12): E00H21.
[21] THOMPSON T W,USTINOV E A,HEGGY E. Modeling radar scattering from icy lunar regoliths at 13 cm and 4 cm wavelengths [J]. Journal of Geophysical Research:Planets,2011,116(E1): E01006.
[22] 金亚秋. 电磁散射和热辐射的遥感理论[M]. 北京:科学出版社,1993.
[23] ULABY F T,MOORE R K,FUNG A K. Microwave remote sensing fundamentals and radiometry [M]// Microwave Remote Sensing Active & Passive. Boston, MA, USA: Addison-Wesley, 1981.
[24] ROBINSON M S,BRYLOW S M,TSCHIMMEL M,et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Science Reviews ,2010,150:81-124
[25] SMITH D E,ZUBER M T,NEUMANN G A,et al. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit[J]. Icarus,2017,283:70-91
[26] NEISH C D,BLEWEET D T,HARMON J K,et al. A comparison of rayed craters on the Moon and Mercury[J]. Journal of Geophysical Research:Planets,2013,118(10):2247-2261
[27] BHIRAVARASU S S,CHAKRABORTY T,PUTREVU D,et al. Chandrayaan-2 Dual-frequency Synthetic Aperture Radar (DFSAR):performance characterization and initial results[J]. The Planetary Science Journal,2021,2:1-21
[28] 徐丰,王海鹏,金亚秋. 合成孔径雷达图像智能解译[M]. 北京:科学出版社,2020.
[29] WANG J,SUN K,CHENG T,et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3349-3364
[30] EKE V R,BARTRAM S A,LANE D A,et al. Lunar polar craters-icy,rough or just sloping?[J]. Icarus,2014,241:66-78