Research Status and Prospect of Moon-Based Earth Observation: A Review

GUO Huadong1,2,3, DING Yixing1,2, LIU Guang1,2

PDF(461 KB)
PDF(461 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (3) : 250-260. DOI: 10.15982/j.issn.2096-9287.2022.20210080
Topic:Moon-based Earth Observation

Research Status and Prospect of Moon-Based Earth Observation: A Review

  • GUO Huadong1,2,3, DING Yixing1,2, LIU Guang1,2
Author information +
History +

Abstract

The deployment of remote sensing sensors on the Moon can realize long-term, overall and stable Earth observation and improve the observation ability of the existing system. In particular, from the outside of the Earth system, the Moon-based remote sensors can observe the evolution process of the earth system and the interaction and influence between the earth system and its exterior. This paper discusses the research progress of Moon-based earth observation in detail from four aspects: scientific objectives, sensor technology, parameter simulation and estimation methods and observatory location. The key scientific problems are analyzed, and a series of new models and methods are summarized. At the end of this paper, some suggestions for the development of Moon-based Earth observation are put forward.

Keywords

Moon-based Earth observation / Earth’s radiation budget / large scale motion of solid Earth / site selection of Moon base / synthetic aperture radar

Cite this article

Download citation ▾
GUO Huadong, DING Yixing, LIU Guang. Research Status and Prospect of Moon-Based Earth Observation: A Review. Journal of Deep Space Exploration, 2022, 9(3): 250‒260 https://doi.org/10.15982/j.issn.2096-9287.2022.20210080

References

[1] ROSENQVIST A,SHIMADA M,CHAPMAN B,et al. The global rain forest mapping project—a review[J]. International Journal of Remote Sensing,2000,21(6-7):1375-1387
[2] WOERNER J ,FOING B . The “Moon village” concept and initiative[C]// Annual Meeting of the Lunar Exploration Analysis Group. Columbia:[s. n. ],2016.
[3] NASA. What is artemis?[EB/OL]. (2019-07-26)[2021-08-31]. https://www.nasa.gov/feature/what-is-artemis/.
[4] 裴照宇, 刘继忠, 王倩,等.月球探测进展与国际月球科研站[J]. 科学通报, 2020,65(24):2577-2586.
PEI Z Y, LIU J Z, WANG Q, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586.
[5] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展,2004,19(3):351-358
OUYANG Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advance In Earth Sciences,2004,19(3):351-358
[6] CARRUTHERS G R,PAGE T. Apollo 16 far-ultraviolet camera/spectrograph:Earth observations[J]. Science,1972,177(4051):788-791
[7] FENG J,LIU J,HE F,et al. Data processing and initial results from the CE-3 extreme ultraviolet camera[J]. Research in Astronomy and Astrophysics,2014,14(12):1664
[8] GUO H,LIU G,DING Y. Moon-based Earth observation:scientific concept and potential applications[J]. International Journal of Digital Earth,2018,11(6):546-557
[9] XU L,ZOU Y L,JIA Y Z. China's planning for deep space exploration and lunar exploration before 2030[J]. Chinese Journal of Space Science,2018,38(5):11-12
[10] JAUMANN R,HIESINGER H,ANAND M,et al. Geology,geochemistry,and geophysics of the Moon:Status of current understanding[J]. Planetary and Space Science,2012,74(1):15-41
[11] COCHRAN E S,VIDALE J E,TANAKA S,et al. Earth tides can trigger shallow thrust fault earthquakes.[J]. Science,2004,306(5699):1164-1166
[12] HANSEN J,SATO M,KHARECHA P,et al. Earth's energy imbalance and implications[J]. Atmospheric Chemistry and Physics,2011,11(9):27031-27105
[13] WILD M,D FOLINI,SCHAER C,et al. The global energy balance from a surface perspective[J]. Climate Dynamics,2013,40(11-12):3107-3134
[14] HARTMANN D L,OCKERT-BELL M E,MICHELSEN M L. The effect of cloud type on Earth's energy balance:global analysis[J]. Journal of Climate,1992,5(11):1281-1304
[15] SCHUCKMANN K V,PALMER M D,TRENBERTH K E,et al. An imperative to monitor Earth's energy imbalance[J]. Nature Climate Change,2016,6:138-144
[16] ANDERSON D E,CA HALAN R F. The Solar Radiation and Climate Experiment (SORCE) mission for the NASA Earth Observing System (EOS)[J]. Solar Physics,2005,230(1-2):3-6
[17] WIELICKI B A. Clouds and the Earth's Radiant Energy System (CERES):algorithm overview[J]. Bulletin of the American Meteorological Society,1998,36(4):1127-1141
[18] TRÉMAS T L,KAROUCHE N ,ROSAK A ,et al. ScaRaB:first results of the scanner for radiative budget on board the Indo-French satellite Megha-Tropiques[C]// SPIE Optical Engineering + Applications. San Diego:SPIE,2012.
[19] WIELICKI B A,WONG T,YOUNG D F,et al. Differences between ERBE and CERES tropical mean fluxes:ENSO,climate change or calibration?: 19990064101[R]. [S. l.]: NASA Langley Technical Report Server, 1999.
[20] FR?HLICH C. Total solar irradiance observations[J]. Surveys in Geophysics,2012,33(3-4):453-473
[21] FR?HLICH C,LEAN J. The Sun's total irradiance:cycles,trends and related climate change uncertainties since 1976[J]. Geophysical Research Letters,1998,25(23):4377-4380
[22] LOEB N G,WIELICKI B A,DOELLING D R,et al. Toward optimal closure of the Earth's top-of-atmosphere radiation budget[J]. Journal of Climate,2009,22(3):748-766
[23] TRENBERTH K E,FASULLO J T. Tracking Earth's energy[J]. Science,2010,328(5976):316-317
[24] LOEB N G,LYMAN J M,JOHNSON G C,et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty[J]. Nature Geoscience,2012,5(2):110-113
[25] 许厚泽,张赤军. 我国大地重力学和固体潮研究进展[J]. 地球物理学报,1997,40(S1):192-205
XU H Z,ZHANG C J. Development of the studies on geodetic gravity and Earth tides in China[J]. Acta Geophysica Sinica,1997,40(S1):192-205
[26] CASSAN A,KUBAS D,BEAULIEU J P,et al. One or more bound planets per Milky Way star from microlensing observations[J]. Nature,2012,481:167-69
[27] KARALIDI T,STAM D M,SNIK F,et al. Observing the Earth as an exoplanet with LOUPE,the lunar observatory for unresolved polarimetry of Earth[J]. Planetary & Space Science,2012,74(1):202-207
[28] SPARKS W B,HOUGH J,GERMER T A,et al. Detection of circular polarization in light scattered from photosynthetic microbes[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(19):7816-7821
[29] TINETTI G,MEADOWS V S,CRISP D,et al. Detectability of planetary characteristics in disk-averaged spectra. I:the Earth model[J]. Astrobiology,2006,6(1):34-47
[30] KALTENEGGER L,TRAUB W A,JUCKS K W. Spectral evolution of an Earth-like planet[J]. The Astrophysical Journal,2006,658(1):598-616
[31] BHARDWAJ A,ELSNER R F,RANDALL G G,et al. X-rays from solar system objects[J]. Planetary and Space Science,2007,55(9):1135-1189
[32] 郭亦鸿,王赤,韦飞,等. 月基软X射线成像仪——对地球磁层的全景观测[J]. 中国科学:地球科学,2021,51(7):1009-1017.
GUO Y H,WANG C,WEI F,et al. A Lunar-based Soft X-ray Imager (LSXI) for the Earth’s magnetosphere[J]. Science China Earth Sciences,2021,64(7):1026-1035.
[33] 何飞,陈波,张效信. 月基观测地球等离子体层极紫外辐射特性[J]. 光学精密工程,2010(12):2564-2573
HE F,CHEN B,ZHANG X X. Moon-based imaging of Earth plasmaspheric extreme ultraviolet radiation[J]. Optics and Precision Engineering,2010(12):2564-2573
[34] MOCCIA A,RENGA A. Synthetic aperture radar for Earth observation from a lunar base:performance and potential applications[J]. IEEE T Aero Elec Sys,2010,46:1034-1051
[35] FORNARO G,FRANCESCHETTI G,LOMBARDINI F,et al. Potentials and limitations of Moon-borne SAR imaging[J]. IEEE T Geosci Remote Sens,2010,48:3009-3019
[36] 郭华东,丁翼星,刘广,等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:地球科学,2013(11):1760-1769
GUO H D,DING Y X,LIU G,et al. Conceptual study of lunar-based SAR for global change monitoring[J]. Science China:Earth Sciences,2013(11):1760-1769
[37] 李德伟,江利明,蒋厚军,等. 月基SAR对地观测系统参数分析[J]. 系统工程与电子技术,2020,42(4):66-72
LI D W,JIANG L M,JIANG H J,et al. System parameters analysis of the Moon-based SAR Earth observation[J]. Systems Engineering and Electronics,2020,42(4):66-72
[38] XU Z ,CHEN K S ,GUO H . Doppler estimation with “Non-Stop-and-Go” assumption in Moon-based SAR imaging[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia:IEEE,2018.
[39] XU Z,CHEN K S. On signal modeling of Moon-based Synthetic Aperture Radar (SAR) imaging of Earth[J]. Remote Sensing,2018,10(3):486-511
[40] XU Z,CHEN K S. Effects of the Earth's curvature and lunar revolution on the imaging performance of the Moon-based synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5868-5882
[41] XU Z,CHEN K S,ZHOU G. Effects of the Earth's irregular rotation on the Moon-based synthetic aperture radar imaging[J]. IEEE Access,2019,99:155014-155027
[42] XU Z ,CHEN K S ,GUO H . Effects of temporally-varying tropospheric path delay on the imaging performance of Moon-based SAR[C]// 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall). Xiamen:[s. n. ],2019.
[43] XU Z,CHEN K S,LI Z L,et al. Apsidal precession effects on the lunar-based synthetic aperture radar imaging performance[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(6):1079-1083
[44] DONG J,SHEN Q,JIANG H,et al. Spatio-temporal distribution of the zero-Doppler line of lunar-based SAR[J]. Remote Sensing Letters,2020,12(2):165-173
[45] XU Z,CHEN K S,ZHOU G. Zero-Doppler centroid steering for the Moon-based synthetic aperture radar:a theoretical analysis[J]. IEEE Geoscience and Remote Sensing Letters,2020,17(7):1208-1212
[46] DUAN W T,HUANG S P,NIE C W. Entrance pupil irradiance estimating model for a Moon-based Earth radiation observatory instrument[J]. Remote Sensing,2019,11(5):583-600
[47] DUAN W T,HUANG S P,NIE C W. Conceptual design of a Moon-based Earth radiation observatory[J]. International Journal of Remote Sensing,2018,39(18):5834-5849
[48] YUAN L,LIAO J. A physical-based algorithm for retrieving land surface temperature from Moon-based Earth observation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:1856-1866.
[49] LI T,GUO H,ZHANG L,et al. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Frontier of Earth Science,2020(1):236-250
[50] 丁翼星,郭华东,刘广. 面向全球变化探测的月基对地观测覆盖性能分析[J]. 湖南大学学报(自然科学版),41(10):96-102.
DING Y X,GUO H D,LIU G. Coverage performance analysis of Earth observation from lunar base for global change detection[J]. Journal of Hunan University(Natural Sciences),41(10):96-102.
[51] GUO H,YE H,LIU G,et al. Error analysis of exterior orientation elements on geolocation for a Moon-based Earth observation optical sensor[J]. International Journal of Digital Earth,2018,13(11):374-392
[52] YE H,GUO H,LIU G,et al. Temporal sampling error analysis of the Earth's outgoing radiation from a Moon-based platform[J]. International Journal of Remote Sensing,2019,40(17-18):6975-6992
[53] CARRUTHERS G R. Apollo 16 far-ultraviolet camera/spectrograph:instrument and operations[J]. Applied Optics,1973,12(10):2501-2508
[54] 李朝辉. 月基对地观测极紫外相机光机结构设计[J]. 仪器仪表学报,2010,31(10):2352-2356
LI Z H. Optomechanical design of lunar based EUV camera for mapping the Earth[J]. Chinese Journal of Scientific Instrument,2010,31(10):2352-2356
[55] 王智,李朝辉. 月基极紫外相机光机结构设计[J]. 光学精密工程,2011(10):125-131
WANG Z,LI M H. Design of optical-mechanical structure for lunar-based extreme ultraviolet camera[J]. Optics and Precision Engineering,2011(10):125-131
[56] 何飞. 月基地球等离子体层极紫外观测与图像反演方法研究[D]. 长春:中国科学院研究生院(长春光学精密机械与物理研究所),2011.
HE F. Moon-based extreme ultraviolet observations of the Earth’s plasmasphere and image inversion methods[D]. Changchun:Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics),2011.
[57] 丁翼星,郭华东,刘广. 基于JPL星历的月基SAR多普勒参数估算方法[J]. 北京航空航天大学学报,2015,41(1):71-76
DING Y X,GUO H D,LIU G. Method to estimate the Doppler parameters of Moon-borne SAR using JPL ephemeris[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(1):71-76
[58] DING Y,GUO H,LIU G,et al. Constructing a high-accuracy geometric model for Moon-based Earth observation[J]. Remote Sensing,2019,11(22):2611
[59] LIU G,GUO H,HANSSEN R F. Characteristics analysis of Moon-based Earth observation under the ellipsoid model[J]. International Journal of Remote Sensing,2020,41(23):9121-9139
[60] SUI Y,GUO H,LIU G,et al. Analysis of long-term Moon-based observation characteristics for Arctic and Antarctic[J]. Remote Sensing,2019,11(23):2805
[61] LIU H,GUO H,LIU G,et al. An exploratory study on Moon-based observation coverage of sea ice from the geometry[J]. International Journal of Remote Sensing,2020,41(16):6089-6098
[62] YE H,GUO H,LIU G,et al. Looking vector direction analysis for the moon-based earth observation optical sensor[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4488-4499
[63] SHEN G,GUO H,LIU G,et al. Geometry numerical simulation and analysis for Moon-based Earth observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:3381-3393
[64] ZHANG L,GUO H,JIAO H,et al. A polar coordinate system based on a projection surface for Moon-based Earth observation images[J]. Advances in Space Research,2019,64(11):2209-2220
[65] XU Z,CHEN K S,LIU G,et al. Spatiotemporal coverage of a Moon-based synthetic aperture radar:theoretical analyses and numerical simulations[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8735-8750
[66] REN Y,GUO H,LIU G,et al. Simulation study of geometric characteristics and coverage for Moon-based Earth observation in the electro-optical region[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(6):2431-2440
[67] YE H,GUO H,LIU G,et al. Observation duration analysis for Earth surface features from a Moon-based platform[J]. Advances in Space Research,2018,62(2):274-287
[68] HUANG J,GUO H,LIU G,et al. Spatio-temporal characteristics for Moon-based Earth observations[J]. Remote Sensing,2020,12(17):2848
[69] WANG H,GUO Q,LI A,et al. Comparative study on the observation duration of the two-polar regions of the Earth from four specific sites on the Moon [J]. International Journal of Remote Sensing, 2020, 41(1): 339-352.
[70] SHANG H,DING Y,GUO H,et al. Simulation of Earth’s outward radiative flux and its radiance in Moon-based view[J]. Remote Sensing,2021,13(13):2535
[71] DONG J,SHEN Q,JIANG L,et al. An analysis of spatiotemporal baseline and effective spatial coverage for lunar-based sar repeat-track interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(9):3458-3469
[72] 董景龙,江利明,沈强,等. 月基SAR 重复轨道干涉测量时-空基线分析[J]. 测绘学报,2019,48(7):849-861
DONG J L,JIANG L M,SHEN Q,et al. Spatio-temporal baseline analysis of lunar-based repeat-track SAR interferometry[J]. Acta Geodaetica et Cartographica Sinica,2019,48(7):849-861
[73] 李德伟,江利明,蒋厚军,等. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探[J]. 地球物理学报,2019,62 (12):4527-4539.
LI D W,JIANG L M,JIANG H J,et al. InSAR phase simulation of solid earth tide and its influence on surface deformation monitoring at wide-area scale[J]. Chinese Journal of Geophysics,2019,62 (12):4527-4539.
[74] WU K,JI C,LUO L,et al. Simulation study of Moon-based InSAR observation for solid Earth tides[J]. Remote Sensing,2020,12(1):123
[75] NIE C,LIAO J,SHEN G,et al. Simulation of the land surface temperature from Moon-based Earth observations[J]. Advances in Space Research,2019,63(2):826-839
[76] YUAN L,LIAO J. Exploring the influence of various factors on microwave radiation image simulation for Moon-based Earth observation[J]. Frontiers of Earth Science,2020(14):430-445
[77] LIAO J,YUAN L,NIE C. A simulation method for thermal infrared imagery from Moon-based Earth observations[J]. IEEE Sensors Journal,2021,21(6):7736-7747
[78] 张吉栋,孟治国,平劲松,等. 基于LOLA数据的Aristarchus高原光照特性初步研究[J]. 深空探测学报(中英文),2017,4(2):171-177
ZHANG J D,MENG Z G,PING J S,et al. Preliminary study of illumination characteristics of Aristarchus plateau using LOLA data[J]. Journal of Deep Space Exploration,2017,4(2):171-177
[79] 贾瑛卓,邹永廖. 月基对地观测对月球基地选址需求分析[J]. 航天器工程,2016,25(6):116-121
JIA Y Z,ZOU Y L. Research on lunar site selection for lunar based Earth observation[J]. Spacecraft Engineering,2016,25(6):116-121
PDF(461 KB)

Accesses

Citations

Detail

Sections
Recommended

/