Research on Spatio-Temporal Characteristics of Moon-Based SAR Earth Observation

CHEN Guoqiang1, GUO Huadong1, LIANG Da2, DING Yixing1, LV Mingyang1, LIU Guang1

PDF(2097 KB)
PDF(2097 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (3) : 261-268. DOI: 10.15982/j.issn.2096-9287.2022.20210076
Topic:Moon-based Earth Observation

Research on Spatio-Temporal Characteristics of Moon-Based SAR Earth Observation

  • CHEN Guoqiang1, GUO Huadong1, LIANG Da2, DING Yixing1, LV Mingyang1, LIU Guang1
Author information +
History +

Abstract

With the rapid development of lunar exploration, the concept of moon-based observation of earth has received more and more attention. The synthetic aperture radar (SAR) deployed on the moon for earth observation can obtain continuous observations of large areas on earth surface, and realize a single wide-area observation mode which makes up for the deficiency of space-borne SAR. Based on the JPL ephemeris data, in this paper the observation difference of moon-based SAR in different scenarios such as time domain and space domain was analyzed, and the simulation of SAR echo was completed using the actual earth-moon spatial relationship. The results show that the moon-based SAR can always find the intersection line of zero Doppler plane on earth surface, and long-term, large-scale periodic observations can be achieved. The SAR echo simulation verifies its feasibility. The study of moon-based SAR observations can provide a basis for follow-up studies such as surface tidal movement and polar sea ice rebound.

Keywords

Moon-based observation of Earth / synthetic aperture radar / spatial relations / zero Doppler plane

Cite this article

Download citation ▾
CHEN Guoqiang, GUO Huadong, LIANG Da, DING Yixing, LV Mingyang, LIU Guang. Research on Spatio-Temporal Characteristics of Moon-Based SAR Earth Observation. Journal of Deep Space Exploration, 2022, 9(3): 261‒268 https://doi.org/10.15982/j.issn.2096-9287.2022.20210076

References

[1] 丁翼星,郭华东,刘广. 面向全球变化探测的月基对地观测覆盖性能分析[J]. 湖南大学学报(自然科学版),2014(10):96-102
DING Y X,GUO H D,LIU G. Coverage performance analysis of Earth observation from lunar base for global change detection[J]. Journal of Hunan University (Natural Sciences),2014(10):96-102
[2] 欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005.
[3] YUAN L,LIAO J. Exploring the influence of various factors on microwave radiation image simulation for Moon-based Earth observation[J]. Frontiers of Earth Science,2019,14(2):430-445
[4] RENGA A,MOCCIA A. Preliminary analysis of a Moon-based interferometric SAR system for very high resolution Earth remote sensing[C]//Proceedings of the 9th ILEWG International Conference on Exploration and Utilisation of the Moon. Sorrento,Italy:[s. n. ],2007:22-26.
[5] HUANG S P. Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth’s climate system[J]. Advances in Space Research,2008,41(11):1853-1860
[6] GRIFFITH D. Near infrared remote sensing of atmospheric trace gases from ground and space[C]//Optics & Photonics for Energy & the Environment. [S. l. ]:Optics & Photonics for Energy & the Environment,2015.
[7] MADSEN S N,EDELSTEIN W,DIDOMENICO L D,et al. A geosynchronous synthetic aperture radar; for tectonic mapping,disaster management and measurements of vegetation and soil moisture[C]//IEEE International Geoscience & Remote Sensing Symposium. [S. l. ]:IEEE,2002.
[8] PALLE E,GOODE P R. The lunar terrestrial observatory:observing the Earth using photometers on the Moon’s surface[J]. Adv Space Res,2009,43:1083–1089.
[9] 魏钟铨. 合成孔径雷达卫星[M]. 北京:科学出版社,2001.
[10] 郭华东,张露. 雷达遥感六十年:四个阶段的发展[J]. 遥感学报,2019,23(6):1023-1035
GUO H D, ZHANG L. 60 years of radar remote sensing: four-stage development[J]. National Remote Sensing Bulletin,2019,23(6):1023-1035
[11] 郭华东. 地球系统空间观测:从科学卫星到月基平台[J]. 遥感学报,2016,20(5):716-723
GUO H D. Earth system observation from space: from scientific satellite to Moon-based platform[J]. National Remote Sensing Bulletin,2016,20(5):716-723
[12] XU Z,CHEN K S. On signal modeling of Moon-based Synthetic Aperture Radar (SAR) imaging of Earth[J]. Remote Sensing,2018,10(3):486
[13] 丁翼星,郭华东,刘广. 基于JPL星历的月基SAR多普勒参数估算方法[J]. 北京航空航天大学学报,2015,41(1):71-76
DING Y X, GUO H D, LIU G. Method to estimate the Doppler parameters of moon-borne SAR using JPL ephemeris[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(1):71-76
[14] 郭华东,丁翼星,刘广,等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:地球科学,2013(11):1760-1769
GUO H D, DING Y X, LIU G, et al. Conceptual study of lunar-based SAR for Global Change Monitoring[J]. Scientia Sinica(Terrae),2013(11):1760-1769
[15] 董景龙. 月基重轨InSAR关键参数研究[D]. 北京:中国科学院大学,2019.
[16] JIANG H,DONG J,JIANG L,et al. Moon-based SAR for Earth observation and its spatial baseline decorrelation in repeat-pass interferometry[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. [S. l]:IEEE,2019.
[17] 马成龙. 月基InSAR观测地球大尺度形变能力研究——以固体地球垂向潮汐形变为例[D]. 北京:中国科学院大学,2019.
[18] 李德伟,江利明,蒋厚军,等. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探[J]. 地球物理学报,2019,62(12):4527-4539
LI D W,JIANG L M,JIANG H J,et al. InSAR phase simulation of solid Earth tide and its influence on surface deformation monitoring at wide-area scale[J]. Chinese Journal of Geophysics,2019,62(12):4527-4539
[19] 陈国强,阮智星,郭华东,等. 月基平台对地观测数据传输链路方案设计及分析[J]. 北京航空航天大学学报,2018,44(4):820-827
CHEN G Q,RUAN Z X,GUO H D,et al. Moon-based platform data transmission link scheme design and analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):820-827
[20] 赵秉吉,张庆君,戴超,等. 一种新的GEOSAR快速零多普勒中心二维姿态导引方法[J]. 电子与信息学报,2019,41(4):763-769
ZHAO B J,ZHANG Q J,DAI C,et al. A new prompt 2-D attitude steering approach for zero Doppler gentroid of GEOsynchronous SAR[J]. Journal of Electronics & Information Technology,2019,41(4):763-769
[21] PARK R S,FOLKNER W M,WILLIAMS J G,et al. The planetary and lunar ephemerides DE430 and DE431[EB/OL]. [2021-10-14]. https://iopscience.iop.org/article/10.3847/1538-3881/abd414/meta#.
[22] 郗晓宁. 月球探测器轨道动力学及其设计[M]. 上海:中国科学院上海天文台,2000.
[23] PETIT G,LUZUM B. IERS conventions (2010)[J]. Iers Technical Note,2010(4):1-8
[24] RAMBAUX N,WILLIAMS J G. The Moon's physical librations and determination of their free modes[J]. Celestial Mechanics & Dynamical Astronomy,2011,109(1):85-100
[25] ECKHARDT D H. Theory of the libration of the Moon[J]. Moon & the Planets,1981,25(1):3-49
[26] MOONS M. Analytical theory of the libration of the Moon[J]. The Moon and the Planets,1982,27(3):257-284
[27] 周辉,杨文涛. 合成孔径雷达卫星的特点与发展[J]. 航天器工程,2005,14(4):69-74
[28] LIU Z Q,DI K C,LI J,et al. Landing site topographic mapping and rover localization for Chang'e-4 mission[J]. Science China (Information Sciences),2020,63(4):170-181
[29] 欧阳伦曦,李新情,惠凤鸣,等. 哨兵卫星Sentinel-1A数据特性及应用潜力分析[J]. 极地研究,2017,29(2):286-295
OUYANG L X,LI X Q,HUI F M,et al. Sentinel-1 A data products' characteristics and the potential applications[J]. Chinese Journal of Polar Research,2017,29(2):286-295
PDF(2097 KB)

Accesses

Citations

Detail

Sections
Recommended

/