PDF(3021 KB)
Path Planning of Lunar Surface Sampling Manipulator for Chang'E-5 Mission
- HU Xiaodong, ZHANG Kuan, XIE Yuan, ZHANG Hui, LU Hao, LIU Chuankai, CHEN Xiang, ZHAO Huanzhou, XIE Jianfeng
Author information
+
Beijing Aerospace Control Center, Beijing 100094,China
Show less
History
+
Received |
Revised |
Published |
30 Sep 2021 |
12 Nov 2021 |
20 Dec 2021 |
Issue Date |
|
20 Dec 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 王琼,侯军,刘然,等. 我国首次月面采样返回任务综述[J]. 中国航天,2021(3):34-39
[2] 马如奇,姜清水,刘宾,等. 月球采样机械臂系统设计及试验验证[J]. 宇航学报,2018,39(12):5-12
MA R Q,JIANG Q S,LIU B,et al. Design and verification of a lunar sampling manipulator system[J]. Journal of Astronautics,2018,39(12):5-12
[3] 唐玲,梁常春,王耀兵,等. 基于柔性补偿的行星表面采样机械臂控制策略研究[J]. 机械工程学报,2017,53(11):97-103
TANG L,LIANG C C,WANG Y B,et al. Research on flexible compensation control strategy for planetary surface sampling manipulator[J]. Journal of Mechanical Engineering,2017,53(11):97-103
[4] NAKANISHI H,YOSHIDA K. Impedance control for free-flying space robots -basic equations and applications[C]//International Conference on Intelligent Robots and Systems. [S. l]:IEEE,2006.
[5] SCHIELE A,HIRZINGER G. A new generation of ergonomic exoskeletons-the high-performance X-Arm-2 for space robotics telepresence[C]//International Conference on Intelligent Robots and Systems. [S. l]:IEEE,2011.
[6] NANOS K,PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intelligent Service Robotics,2011,4(1):3-15
[7] SUTTON R S,BARTO A G. Introduction to reinforcement learning[M]. Cambridge:MIT press,1998.
[8] MAEDA Y,WATANABE T,MORIYAMA Y. View-based programming with reinforcement learning for robotic manipulation[C]//IEEE International Symposium on Assembly and Manufacturing. [S. l]:IEEE,2011.
[9] PARK J J,KIM J H,SONG J B. Path planning for a robot manipulator based on probabilistic roadmap and reinforcement learning[J]. International Journal of Control Automation & Systems,2007,5(6):674-680
[10] LANGE S,RIEDMILLER M,VOIGTLANDER A. Autonomous reinforcement learning on raw visual input data in a real world application[C]//International Joint Conference on Neural Networks. [S. l]:IEEE,2012.
[11] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436
[12] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. [S. l]:Curran Associates Incorperation,2012.
[13] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149
[14] MNIH V,KAVUKCUOGLU K,SILVER D,et al. Playing atari with deep reinforcement learning[J/OL]. (2021-10-9). https://arxiv.org/abs/1312.5602.
[15] OSTAFEW C J,SCHOELLIG A P,BARFOOT T D. Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments[C]//IEEE International Conference on Robotics and Automation. [S. l]:IEEE,2016.
[16] LEI T,MING L. A robot exploration strategy based on Q-learning network[C]//IEEE International Conference on Real-Time Computing and Robotics. [S. l]:IEEE,2016.
[17] ZHANG F Y,LEITNER J,MILFORD M,et al. Towards vision-based deep reinforcement learning for robotic motion control[C]//proceedings of Australasian Conference on Robotics and Automation(ACRA). Australasian:IEEE,2015.
[18] HASSELT H V,GUEZ A,SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence Computer Science. Phoenix,Arizona,USA:AIAA,2016.
[19] SCGAUL T , QUAN J , ANTONOGLOU I , et al. Prioritized Experience Replay[EB/OL]. (2015-11-18). https://www.semanticscholar.org/paper/Prioritized-Experience-Replay-Schaul-Quan/c6170fa90d3b2efede5a2e1660cb23e1c824f2ca?p2df.
[20] WANG Z,SCHAUL T,HESSEL M,et al. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York ,USA:JMLR. ,2015.
[21] 裴照宇,任俊杰,彭兢,等. “嫦娥五号”任务总体方案权衡设计[J]. 深空探测学报(中英文),2021,8(3):215-226
PEI Z Y,REN J J,PENG J,et al. Overall scheme trade-off design of Chang’E-5 mission[J]. Journal of Deep Space Exploration,2021,8(3):215-226
[22] GOMES E R,KOWALCZYK R. Dynamic analysis of multiagent Q -learning with ε-greedy exploration[C]//International Conference on Machine Learning. [S. l]:ACM,2009.