Perfermance Analysis of Deep-Space Interferometry in Chang'E-5 Mission

REN Tianpeng1,2, LU Weitao1,2, KONG Jing1,2, XIE Jianfeng1,2, HAN Songtao1,2, WANG Mei1,2, MAN Haijun1,2, NIU Dongwen1,2, LIU Heshan1,2, ZHOU Zhijin1,2

Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (6) : 572-581.

PDF(3889 KB)
PDF(3889 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (6) : 572-581. DOI: 10.15982/j.issn.2096-9287.2021.20210055
Topic:Lunar and planetary TT&C Technology
Topic:Lunar and planetary TT&C Technology

Perfermance Analysis of Deep-Space Interferometry in Chang'E-5 Mission

  • REN Tianpeng1,2, LU Weitao1,2, KONG Jing1,2, XIE Jianfeng1,2, HAN Songtao1,2, WANG Mei1,2, MAN Haijun1,2, NIU Dongwen1,2, LIU Heshan1,2, ZHOU Zhijin1,2
Author information +
History +

Abstract

China’s deep space interferometry system has participated in orbit measurement for the Chang’E-5 mission officially, which has provided high-precision angular position information. The tropospheric delay hybrid model was proposed to ensure the accuracy of real-time interferometry. Using the non-continuous tracking technology, fast intercontinental interferometry was carried out for the first time, which provided high-precision angular position with the advantage of baseline length. The performance was evaluated based on the orbit measurement results of Chang’E-5 probe. These results show that the deep-space interferometry system has played an important role in the fast orbit determination.

Keywords

VLBI / China deep-space interferometry / Chang'E-5 / orbit measurement

Cite this article

Download citation ▾
REN Tianpeng, LU Weitao, KONG Jing, XIE Jianfeng, HAN Songtao, WANG Mei, MAN Haijun, NIU Dongwen, LIU Heshan, ZHOU Zhijin. Perfermance Analysis of Deep-Space Interferometry in Chang'E-5 Mission. Journal of Deep Space Exploration, 2021, 8(6): 572‒581 https://doi.org/10.15982/j.issn.2096-9287.2021.20210055

References

[1] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5(2):99-114
DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114
[2] 洪晓瑜. VLBI技术的发展和“嫦娥工程”中的应用[J]. 自然杂志,2007,29(5):297-299
HONG X Y. VLBI techniques and application in the Chang’e lunar orbiter[J]. Chinese Journal of Nature,2007,29(5):297-299
[3] 蒋栋荣,洪晓瑜. 甚长基线干涉测量技术在深空导航中的应用[J]. 科学,2008,60(1):10-14
JIANG D R, HONG X Y. VLBI for deep-space navigation[J]. Science,2008,60(1):10-14
[4] 王宏,董光亮,胡小工, 等. USB-VLBI综合快速确定环月飞行器短弧轨道[J]. 测绘科学技术学报,2007,24(2):100-103
WANG H,DONG G L,HU X G,et al. Joint short arc orbit determination of lunar satellite with USB-VLBI[J]. Journal of Geomatics Science and Technology,2007,24(2):100-103
[5] 钱志瀚,李金岭. 甚长基线干涉测量技术在深空探测中的应用[M]. 北京:中国科学技术出版社, 2012.
[6] 刘庆会,吴亚军. 高精度VLBI 技术在深空探测中的应用[J]. 深空探测学报(中英文),2015,2(3):208-212
LIU Q H,WU Y J. Application of high precision VLBI technology in deep space exploration[J]. Journal of Deep Space Exploration,2015,2(3):208-212
[7] 王广利,洪晓瑜,刘庆会,等. “嫦娥4号”高精度VLBI测轨技术[J]. 深空探测学报(中英文),2020,7(4):332-339
WANG G L,HONG X Y,LIU Q H,et al. High-precision VLBI orbit measurement technology in the Chang'E-4 mission[J]. Journal of Deep Space Exploration,2020,7(4):332-339
[8] 郑为民,张娟,徐志骏, 等. 实时VLBI处理机技术[J]. 深空探测学报(中英文),2020,7(4):354-361
ZHENG W M,ZHANG J,XU Z J,et al. Real-time correlator technologies of VLBI[J]. Journal of Deep Space Exploration,2020,7(4):354-361
[9] 吴伟仁,李海涛,李赞,等. 中国深空测控网现状与展望[J]. 中国科学:信息科学,2020,50:87-108
WU W R,LI H T,LI Z,et al. Status and prospect of China's deep space TT&C network[J]. Scientia Sinica(Informationis),2020,50:87-108
[10] 任天鹏,唐歌实,曹建峰,等. 实时干涉测量中对流层延迟与钟差精修正建模[J]. 载人航天,2016,22(4):483-487,493
REN T P,TANG G S,CAO J F,et al. Correction modeling of tropospheric delay and clock error in real-time interferometry[J]. Manned Spaceflight,2016,22(4):483-487,493
[11] HOPFIELD H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical Research Atmospheres,1969,74(18):4487-4499
[12] SAASTAMOINEN J H. Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites[J]. Use of Artificial Satellites for Geodesy,1972,1:15
[13] PENNA N,DODSON A,CHEN W. Assessment of EGNOS tropospheric correction model[J]. Journal of Navigation,2001,54(1):37-55
[14] NIELL A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of Geophysical Research Atmospheres,1996,101(B2):3227-3246
[15] BOEHM J,KOUBA J,SCHUH H. Forecast vienna mapping functions 1 for real-time analysis of space geodetic observations[J]. Journal of Geodesy,2009,83(5):397-401
[16] BOEHM J,NIELL A,TREGONING P,et al. Global Mapping Function (GMF):a new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33(7): L37304, 1-4.
[17] 路伟涛,谢剑锋,韩松涛,等. 深空站区域对流层延迟模型构建及在嫦娥四号中的应用[J]. 中国科学:技术科学,2019,49(11):1286-1294
LU W T,XIE J F,HAN S T,et al. Construction of regional tropospheric delay model in deep space station and its application in Chang’E-4 mission[J]. Scientia Sinica Technologica. 2019, 49(11):1286-1294.
[18] 任天鹏,唐歌实,史珍威,等. 一种高精度区域对流层延迟模型及验证[J]. 遥测遥控,2016,37(2):29-35
REN T P,TANG G S,SHI Z W,et al. A high-accuracy regional tropospheric delay model and its verification[J]. Journal of Telemetry,Tracking and Command,2016,37(2):29-35
PDF(3889 KB)

Accesses

Citations

Detail

Sections
Recommended

/