Research Status and Development Trend of Thermal Control Materials in Deep Space Extreme Thermal Environment

YU Dengyu1, QIU Jiawen2, XIANG Yanchao3

PDF(1843 KB)
PDF(1843 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (5) : 447-453. DOI: 10.15982/j.issn.2096-9287.2021.20210042
Topic:Deep Space Extreme Environment Protection and New Materials

Research Status and Development Trend of Thermal Control Materials in Deep Space Extreme Thermal Environment

  • YU Dengyu1, QIU Jiawen2, XIANG Yanchao3
Author information +
History +

Abstract

Extreme environments such as extreme cool environment, extreme hot environment and gaseous environment will be encountered in deep space exploration; these environments pose great difficulties to the design of thermal control subsystem and put forward strict requirements for thermal control material. In view of future deep space exploration missions in China, the typical extreme thermal environment factors and their influences on the design of spacecraft thermal control subsystem were analyzed. The application and main performance of some new thermal control materials were discussed, and these new thermal control materials include high-temperature aerogel composites with maximum operating temperature of 1 200 oC, low density silica aerogel composites with a density lower than 30 kg/m3, transparent polyimide film and solar heat absorbing coating. The development trend for new thermal control materials was analyzed, such as light-weight heat-resistant materials in extreme high temperature environment and high-efficiency heat insulation materials in gaseous environment.

Keywords

deep space exploration / thermal environment / thermal control material / thermal protection

Cite this article

Download citation ▾
YU Dengyu, QIU Jiawen, XIANG Yanchao. Research Status and Development Trend of Thermal Control Materials in Deep Space Extreme Thermal Environment. Journal of Deep Space Exploration, 2021, 8(5): 447‒453 https://doi.org/10.15982/j.issn.2096-9287.2021.20210042

References

[1] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 深空探测学报(中英文), 2015, 47(6): 785-791.
SUN Z Z, MENG L Z. Current situation and sustainable development trend of deep space exploration in China[J].Journal of Deep Space Exploration, 2015, 47(6): 785-791.
[2] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历史与未来展望[J]. 深空探测学报(中英文),2016,3(2):108-113
YU D Y, SUN Z Z, MENG L Z, et a1. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration,2016,3(2):108-113
[3] 范含林, 范宇峰. 航天器热控分系统对材料的需求分析[J]. 航天器环境工程,2010,27(2):135-138
FAN H L, FAN Y F. The demand of materials in the spacecraft thermal control subsystem[J]. Spacecraft Environment Engineering,2010,27(2):135-138
[4] 李明. 我国航天器发展对材料技术需求的思考[J]. 航天器工程,2016,25(2):1-5
LI M. Review on requirement of materials technology for development of Chinese spacecraft[J]. Spacecraft Engineering,2016,25(2):1-5
[5] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416
WU W R, LIU J Z, TANG Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
[6] ROSA D D, BUSSEY B, CAHILL J T. Characterization of potential landing sites for the European Space Agency’s 1unar lander project[J]. Planetary and space science,2012,74(1):224-246
[7] ALEXANDER M. Mars transportation environment definition document: NASA/TM-2001-210935[R]. Marshall Space Flight Center, Alabama, USA: NASA, 2001.
[8] GILMORE D G. Spacecraft thermal control handbook, Volume I: fundamental technologies[M].El Segundo, California: The Aerospace Press, 2004.
[9] 韩崇威, 赵啟伟, 张旸, 等. 第二代490N发动机热控设计[J]. 航天器环境工程,2013,30(4):388-391
HAN C W, ZHAO Q W, ZHANG Y, et al. Thermal control design of the second generation 490N engine[J]. Spacecraft Environment Engineering,2013,30(4):388-391
[10] 马巨印, 张有为, 陈建新, 等. 大推力发动机在轨羽流热效应监测与反演方法[J]. 航天器工程,2019,28(4):60-64
MA J Y, ZHANG Y W, CHEN J X, et al. Method of on-orbit plume heat effect monitoring and inversion for large thrust engines[J]. Spacecraft Engineering,2019,28(4):60-64
[11] 朱召贤, 王飞, 姚鸿俊, 等. 遮光剂掺杂Al2O3-SiO2气凝胶/莫来石纤维毡复合材料的高温隔热性能研究[J]. 无机材料学报,2018,33(9):969-975
ZHU Z X, WANG F, YAO H J, et al. High-temperature insulation property of opacifier - doped Al2O3-SiO2 aerogel/mullite fiber composites[J]. Journal of Inorganic Materials,2018,33(9):969-975
[12] HüSING N, SCHUBERT U. Aerogels-airy materials: chemistry, structure, and properties[J]. Angewandte Chemie International Edition,1998(37):22-45
[13] NOVAK K S, PHILLIPS C J , SUNADA E T, et al. Mars exploration rover surface mission flight thermal performance[C]//35th International Conference on Environmental System. Rome, Italy: [s. n.], 2005.
[14] 艾素芬, 向艳超, 雷尧飞, 等. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报(中英文),2020,7(5):466-473
AI S F, XIANG Y C, LEI X F, et al. Preparation and characterization of ultra-low density nano-aerogel insulation materials for Mars rover[J]. Journal of Deep Space Exploration,2020,7(5):466-473
[15] DANTZLER A A, STRAIN R D, FAULCONER J W. Solar Probe+ mission engineering study report[R]. USA: The Johns Hopkins University Applied Physics Laboratory, 2008.
[16] HEISLER E, ABEL E, CONGDON E, et al. Full scale thermal simulator development for the solar probe plus thermal protection system[C]//Proceedings of the 2017 IEEE Aerospace Conference. [S. l. ]: IEEE, 2017.
[17] 黄善杰, 林隽, 金振宇, 等. 帕克太阳探测器热防护系统研究及启示[J]. 天文研究与技术,2020,17(4):538-547
HUANG S J, LIN J, JIN Z Y, et al. Research and enlightenment of heat protection system of Park Solar Probe[J]. Astronomical Research and Technology,2020,17(4):538-547
[18] 黄善杰, 种晓宇, 林隽, 等. 太阳爆发抵近探测器的热防护设计方案研究[J]. 天文研究与技术,2021,18(1):87-100
HUANG S J, ZHONG X Y, LIN J, et al. Study on design scheme of thermal protection of probe for in situ measurements of solar eruption[J]. Astronomical Research and Technology,2021,18(1):87-100
[19] CONGDON E A , MEHOKE D S, BUCHTA M, et al. Development of a high-temperature optical coating for thermal management on solar probe plus[C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago, IIIinois: AIAA, 2010.
[20] HICKEY, GREGORY S. Integrated thermal control and qualification for Mars rover[C]//SAE 26th Int. Conference on Environmental Systems. [S. l. ]: SAE , 1996.
[21] WEN H, HICKEY L C, BRAUN G , et al. Sojourner Mars rover thermal performance[C]//SAE 28th Int. Conference on Environmental Systems. [S. l. ]: SAE, 1998.
[22] STEVEN M J. Aerogel: space exploration applications[J]. Journal of Sol-Gel Science and Technology,2006,40(2-3):351-357
PDF(1843 KB)

Accesses

Citations

Detail

Sections
Recommended

/