Research Progress of Autonomous Planning Technology for Deep Space Probes

XU Rui1,2, LI Zhaoyu1,2, ZHU Shengying1,2, WANG Bang1,2, LIANG Zixuan1,2, SHANG Haibin1,2

PDF(638 KB)
PDF(638 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (2) : 111-123. DOI: 10.15982/j.issn.2096-9287.2021.20210039
Topic:Autonomous Planning Technology for Deep Space Exploration
Topic:Autonomous Planning Technology for Deep Space Exploration

Research Progress of Autonomous Planning Technology for Deep Space Probes

  • XU Rui1,2, LI Zhaoyu1,2, ZHU Shengying1,2, WANG Bang1,2, LIANG Zixuan1,2, SHANG Haibin1,2
Author information +
History +

Abstract

In the process of deep space exploration,the probe has a long flight distance and is in dynamic environment. Traditional ground station telemetry and remote control methods can hardly meet the requirements of real-time,robustness and safety of the probe control. It is urgent for the probe to have autonomy,and autonomous planning technology is one of the key technologies to realize the autonomous operation of the probe. The article introduces the development of autonomous planning technology and the connotation of autonomous planning for deep space probes,summarizes and analyzes key technologies from the framework of planning and execution,planning model,mission planning,replanning,motion planning and scientific observation mission planning,and proposes the development direction of autonomous planning based on technological development and mission requirements.

Keywords

deep space exploration / autonomous planning / mission planning / motion planning / scientific observation mission planning

Cite this article

Download citation ▾
XU Rui, LI Zhaoyu, ZHU Shengying, WANG Bang, LIANG Zixuan, SHANG Haibin. Research Progress of Autonomous Planning Technology for Deep Space Probes. Journal of Deep Space Exploration, 2021, 8(2): 111‒123 https://doi.org/10.15982/j.issn.2096-9287.2021.20210039

References

[1] FIKES R E,NILSSON N J. Strips:a new approach to the application of theorem proving to problem solving[J]. Artificial Intelligence,1971,2(3/4):189-208
[2] BERNARD D E,DORAIS G A,FRY C,et al. Design of the remote agent experiment for spacecraft autonomy[C]//1998 IEEE Aerospace Conference Proceedings. Snowmass,CO,USA:IEEE,1998.
[3] RABIDEAU G,WONG V,GAINES D,et al. Onboard automated scheduling for the Mars 2020 rover[C]//The International Symposium on Artificial Intelligence,Robotics and Automation in Space. Pasadena,California:NASA,2020.
[4] FILIPE C,MAURíCIO F,FABRíCIO K. On-board automated mission planning for spacecraft autonomy:a survey[J]. IEEE Latin America Transactions,2019,17(6):884-896.
[5] 李朝玉. 复杂时间约束下深空探测器任务规划方法研究[D]. 北京:北京理工大学,2019.
[6] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28
CUI P Y,XU R,ZHU S Y. State of the art and trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28
[7] MASSIMO T,LUIGI G. A survey on model-based mission planning and execution for autonomous spacecraft[J]. IEEE Systems Journal,2017,12(4):3893-3905
[8] AGRE P E,CHAPMAN D. Pengi:an implementation of a theory of activity[C]//The Sixth National Conference on Artificial Intelligence. Seattle,Washington:AAAI,1987:268-272.
[9] THRUN S,MONTEMERLO M,DAHLKAMP H,et al. Stanley:the robot that won the darpa grand challenge[J]. Journal of Robotic Systems,2006,23(9):661-692
[10] NESNAS I A D,SIMMONS R,GAINES D,et al. Claraty:challenges and steps toward reusable robotic software[J]. International Journal of Advanced Robotic Systems,2008,3(1):23-30
[11] CHIEN S,KNIGHT R,STECHERT A,et al. Using iterative repair to improve the responsiveness of planning and scheduling[C]//The Fifth International Conference on Artificial Intelligence Planning Systems. Breckenridge,Colorado:IEEE,2000.
[12] ESTLIN T,NESNAS I,MUTZ D,et al. Decision-making in a robotic architecture for autonomy[C]//The Sixth International Symposium on Artificial Intelligence,Robotics,and Automation in Space. Montreal,Canada:IEEE,2001.
[13] JOHNSTON M D,MILLER G E. SPIKE:Intelligent scheduling of Hubble space telescope observations[J]. Intelligent Scheduling,1994:391-422
[14] ZWEBEN M,DAVIS E,DAUN B,et al. Scheduling and rescheduling with iterative repair[J]. Systems Man & Cybernetics IEEE Transactions,1992,23(6):1588-1596
[15] RABIDEAU G,KNIGHT R,CHIEN S,et al. Iterative repair planning for spacecraft operations using the ASPEN system[C]//The Fifth Artificial Intelligence. Robotics and Automation in Space. Noordwijk,The Netherlands:IEEE,1999.
[16] STUART R,PETER N. 人工智能:一种现代方法. 第2版[M]. 姜哲,金奕江,张敏,等译. 北京:人民邮电出版社,2010.
[17] PE P D. ADL:exploring the middle ground between STRIPS and the situation calculus[C]//The 1st International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann:IEEE,1989.
[18] GHALLAB M,HOWE A,KNOBLOCK C,et al. PDDL-the planning domain definition language[R]. New Haven,USA:Yale University,1998.
[19] FORX M,LONG D. PDDL2.1:An extension to PDDL for expressing temporal planning domains[J]. Journal of Artificial Intelligence Research,2003,20:61-124
[20] BARREIRO J,BOYCE M,DO M,et al. EUROPA:a platform for AI planning,scheduling,constraint programming,and optimization[C]//The 4th International Competition on Knowledge Engineering for Planning and Scheduling. Atibaia,S?o Paulo,Brazil:ICKEPS,2012.
[21] VILAIN M,KAUTZ H,VAN B P. Constraint propagation algorithms for temporal reasoning:a revised report[M]. San Francisco:Morgan Kaufmann Publishers Inc.,1989.
[22] ALLEN J F. Maintaining knowledge about temporal intervals[J]. Communications of the ACM,1983,26(11):832-843
[23] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[24] BARTáK R,SALIDO M A,ROSSI F. Constraint satisfaction techniques in planning and scheduling[J]. Journal of Intelligent Manufacturing,2010,21(1):5-15
[25] GEORGIEVSKI I,AIELLO M. HTN planning:Overview,comparison,and beyond[J]. Artificial Intelligence,2015,222:124-156
[26] ONO M,WILLIAMS B C,BLACKMORE L. Probabilistic planning for continuous dynamic systems under bounded risk[J]. Journal of Artificial Intelligence Research,2013,46:511-577
[27] CUSHING W A,KAMBHAMPATI S. When is temporal planning really temporal[M]. USA:Arizona State University,2012.
[28] 徐瑞,崔平远,朱圣英. 深空探测器自主任务规划技术[M]. 北京:高等教育出版社,2018.
[29] SCHUSTER M J,BRUNNER S G,BUSSMANN K,et al. Towards autonomous planetary exploration:the lightweight rover unit(LRU),its success in the spacebotcamp challenge,and beyond[J]. Journal of Intelligent & Robotic Systems,2019,93(3-4):461-494
[30] PONZONI C C C,ALBORE A,T’HOOFT J,et al. AMPLE:an anytime planning and execution framework for dynamic and uncertain problems in robotics[J]. Autonomous Robots,2019,43:37-62
[31] ZHENG Z,GUO J,GILL E. Onboard autonomous mission re-planning for multi-satellite system[J]. Acta Astronautica,2018,145:28-43
[32] BRESINA J,DEARDEN R,MEULEAU N,et al. Planning under continuous time and resource uncertainty:a challenge for AI[C]//Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence. Alberta,Canada:ACM,2002.
[33] XHAFA F,IP A W H. Optimisation problems and resolution methods in satellite scheduling and space-craft operation:a survey[J]. Enterprise Information Systems,2019(1):1-24
[34] TIPALDI M,GLIELMO L. A survey on model-based mission planning and execution for autonomous spacecraft[J]. IEEE Systems Journal,2018,12(4):3893-3905
[35] SCALA E,MICALIZIO R,TORASSO P. ReCon:An Online Task ReConfiguration Approach for Robust Plan Execution[C]//The Sixth International Conference on Agents and Artificial Intelligence. Loire Valley,France:ACM,2014.
[36] KROGT R V D,WEERDT M D. Plan Repair as an Extension of Planning[C]//The International Conference on Automated Planning & Scheduling(ICAPS). CA,USA:ICAPS,2005.
[37] NEBEL B,KOEHLER J. Plan reuse versus plan generation:A theoretical and empirical analysis[J]. Artificial Intelligence,1995,76(1-2):427-454
[38] HAMMOND K J. Explaining and repairing plans that fail[J]. Artificial Intelligence,1990,45(1-2):173-228
[39] KOEHLER J. Flexible plan reuse in a formal framework[J]. Current Trends in AI Planning,1994:171-184
[40] GEREVINI A,SERINA I. Fast plan adaptation through planning graphs:local and systematic search techniques[C]// International Conference on Artificial Intelligence Planning Systems. Breckenridge,Co,USA:DBLP,2000.
[41] 徐瑞,陈超,崔平远,等. 航天器自主任务规划修复技术研究进展[J]. 宇航学报,2019,40(7):733-741
XU R,CHEN C,CUI P Y,et al. Research on spacecraft autonomous mission plan repair[J]. Journal of Astronautics,2019,40(7):733-741
[42] MCINNES C R. Large-angle slew maneuvers with autonomous sun vector avoidance[J]. Journal of Guidance Control and Dynamics,1994,17(4):875-877
[43] HABLANI H B. Attitude commands avoiding bright objects and maintaining communication with ground station[J]. Journal of Guidance,Control,and Dynamics,1999,22(6):759-767
[44] XU R,WU C Q,ZHU S Y,et al. A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space[J]. Information Systems Frontiers,2017,19(4):945-953
[45] KIM Y,MESBAHI M,SINGH G,et al. On the convex parameterization of constrained spacecraft reorientation[J]. Aerospace & Electronic Systems IEEE Transactions on,2010,46(3):1097-1109
[46] WU C,XU R,ZHU S,et al. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[J]. Acta Astronautica,2017,137(8):128-127
[47] SUN C C,DAI R. Spacecraft attitude control under constrained zones via quadratically constrained quadratic programming[C]//AIAA Guidance,Navigation,and Control Conference. Kissimmee,USA:AIAA,2015.
[48] HARGRAVES C R,PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance,1986,10(4):338-342
[49] DIXON L C W,BIGGS M C. The advantages of adjoint-control transformations when determining optimal trajectories by Pontryagin's maximum principle[J]. Aeronautical Journal,2016,76(735):169-174
[50] BORNSCHLEGL E,GUETTIER C,PONCET J C. Automatic planning for autonomous spacecrafts constellation[C]//2nd NASA International Workshop on Planning and Scheduling for Space. [S.l]:AIAA,1999.
[51] YANG I,ZHAO Y. Real-time trajectory planning for autonomous aerospace vehicles amidst static obstacles[C]//1st UAV Conference. Portsmouth,Virginia:AIAA,2002.
[52] ATKINS E,PENNECOT Y. Autonomous satellite formation assembly and reconfiguration with gravity fields[C]//Proceedings,IEEE Aerospace Conference. Big Sky,MT,USA:IEEE,2002.
[53] GéRARD V,CéDRIC P,LEMATRE M. Constraint-based modeling of discrete event dynamic systems[J]. Journal of Intelligent Manufacturing,2010,21(1):31-47
[54] CéDRIC P,GéRARD V. Using constraint networks on timelines to model and solve planning and scheduling problems[C]//Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling,ICAPS 2008. Sydney,Australia:ACM,2008.
[55] LEMA?TRE M,VERFAILLIE G. Interaction between reactive and deliberative tasks for on-line decision-making[C]//Proceedings of the ICAPS-07 Workshop on Planning and Plan Execution for Real word Systems,Providence. Rhode Island,USA:ICAPS,2007.
[56] CHIEN S,RABIDEAU G,KNIGHT R,et al. ASPEN - Automating space mission operations using automated planning and scheduling[C]// In Proceedings of SpaceOps. USA:AIAA,2000.
[57] KNIGHT R,RABIDEAU G,CHIEN S,et al. Casper:space exploration through continuous planning[J]. IEEE Intelligent Systems and Their Applications,2001,16(5):70-75
[58] JOHNSTON M D. Spike:AI scheduling for NASA's Hubble space telescope[C]//Conference on Artificial Intelligence Applications. Santa Barbara,CA,USA:IEEE,1990.
[59] ZHENG Z,GUO J,GILL E. Distributed onboard mission planning for multi-satellite systems[J]. Aerospace Science and Technology,2019,89:111-122
[60] 王冲,景宁,李军,等. 协同进化方法求解多中心卫星任务规划问题[J]. 航空学报,2010(9):1832-1840
WANG C,JING N,LI J,et al. Solving multi-center satellite mission scheduling problems by coevolutionary method[J]. Acta Aeronautica et Astronautica Sinica,2010(9):1832-1840
[61] 赵凡宇. 航天器多目标观测任务调度与规划方法研究[D]. 北京:北京理工大学,2015.
ZHAO F Y. Mission scheduling and planning of multi-target observations for spacecraft[D]. Beijing:Beijing Institute of Technology,2015.
[62] DU B,LI S. A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica,2019,163:287-298
[63] ZHENG Z,GUO J,GILL E. Onboard mission allocation for multi-satellite system in limited communication environment[J]. Aerospace Science and Technology,2018,79:174-186
PDF(638 KB)

Accesses

Citations

Detail

Sections
Recommended

/