Research on Ablation Properties of Light Thermal Protection Materials in Deep Space

LIANG Xin, FANG Zhou, CHENG Lei, LUO Lijuan, HE Zhaohui, WU Yongzhi

PDF(2111 KB)
PDF(2111 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (5) : 467-471. DOI: 10.15982/j.issn.2096-9287.2021.20210038
Topic:Deep Space Extreme Environment Protection and New Materials
Topic:Deep Space Extreme Environment Protection and New Materials

Research on Ablation Properties of Light Thermal Protection Materials in Deep Space

  • LIANG Xin, FANG Zhou, CHENG Lei, LUO Lijuan, HE Zhaohui, WU Yongzhi
Author information +
History +

Abstract

In light of light thermal protection materials’ anti-ablation difficulty in deep space with higher heat flux, the ablation properties of light thermal protection material A enhanced by honeycomb (self-developed with a density of 0.48 g/cm3) was researched by arc-heated wind tunnel test (with a heat density of 6 000 kW/m2). The density change analysis of the material after ablation was done along the depth direction. The thermal stress of material A was calculated and analyzed. Research results show that the carbonization layer is complete after ablation; it can be clearly seen from the micro graph of the carbonization layer that hollow fillers are broken and the resin matrix cannot be seen; the components of the material react with each other and SiC crystal is generated on the surface of material A, which boosts heat consuming in the processing of ablation and improves the carbonization layer strength and retards oxization. The thickness of pyrolysis layer is thin, which shows that the light thermal protection material has excellent insulation performance. The honeycomb structure of material A can effectively reduce the thermal stress of the material. This research has great significance for the reliability assessment of thermal protection materials in deep space exploration.

Keywords

thermal protection material / ablation / carbonization layer / light

Cite this article

Download citation ▾
LIANG Xin, FANG Zhou, CHENG Lei, LUO Lijuan, HE Zhaohui, WU Yongzhi. Research on Ablation Properties of Light Thermal Protection Materials in Deep Space. Journal of Deep Space Exploration, 2021, 8(5): 467‒471 https://doi.org/10.15982/j.issn.2096-9287.2021.20210038

References

[1] JOHN H B, KENNETH S K. Systems design experience from three manned space programs[C]// AlAA 61st Annual Meeting and Technical DisDlay. Anaheim, California: AIAA, 1969.
[2] BRYANERB R, GREENSHIELDS D H, CHAUVIN T, et al. Apollo thermal-protection system development[J]. Spacecraft,1970,7(6):727-734
[3] GRAVES R A, WITTTE W G. Flight-test analysis of Apollo heat-shield material using the pacemaker vehicle system: NASA-TN-D- 4713[R]. USA: NASA, 1968.
[4] WILLCOCKSON H W. Mars Pathfinder heatshield design and flight experience[J]. Journal of Spacecraft and Rockets,1999,36(3):374-379
[5] ADAM S, PRASUN D, WAYNE L, et al. The Mars exploration rovers entry descent and landing and the use of aerodynamic decelerators[C]//AIAA ADS Conference. Monterey, Ca: AIAA, 2003.
[6] HUY T, MICHAEL T, WILLIAM H, et al. Ames research center shear tests of SLA-561V heat shield material for Mars-pathfinder: NASA-TM-110402 96N34006[R]. USA: NASA, 1996.
[7] LAUB B, CHEN Y K. Development of high fidelity thermal/ablation response model for SLA-561V[C]//41st AIAA thermophysics conference. San Antonio, TX: AIAA, 2009.
[8] JOHN K. Overview of the orion thermal protection system development[C]//7th International Planetary Probe Workshop. [S. l. ]: NASA, 2010.
[9] ETHIRAJ V, JAMES R. NASA crew exploration vehicle, thermal protection system, lessons learned[C]//6th International Planetary Probe Workshop. [S. l. ]: NASA, 2008.
[10] RICHARD A T, VICTOR L, THOMAS J, et al. Analysis of compression pad cavities for the orion heatshield[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2009.
[11] MCKINNEY J, FERGUSON P, R. DIAZ A, et al. Boeing CST-100 landing and recovery system design and development testing: AIAA-2013-1262 [R]. Reston: AIAA, 2013.
[12] KOWAL T J. Thermal protection system(heat shield) development - advanced development project[C]//JSC Commercial Human space Flight Symposium. USA: JSC, 2010.
[13] 王春明, 梁馨, 孙宝岗, 等. 低密度烧蚀材料在神舟飞船上的应用[J]. 宇航材料工艺,2011,41(2):6-8
WANG C M, LIANG X, SUN B G, et al. Application of low density ablative material on shenzhou spacecraft[J]. Aerospace Materials & Technology,2011,41(2):6-8
[14] 董彦芝, 刘峰, 杨昌昊, 等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学:技术科学,2015,45(45):151-159
DONG Y Z, LIU F, YANG C H, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3rd phase of Chinese lunar exploration program[J]. Scientia Sinica Technologica,2015,45(45):151-159
[15] 航天材料及工艺研究所. DqESJ7, 蜂窝夹层结构和蜂窝增强低密度烧蚀材料拉伸性能测试方法[S]. 北京,航天材料及工艺研究所,1999年.
[16] 航天材料及工艺研究所. DqESJ19-99, 蜂窝增强低密度烧蚀材料线膨胀系数测试方法[S]. 北京,航天材料及工艺研究所,1999年.
[17] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社, 2004.
[18] 单辉祖. 材料力学教程[M]. 北京: 国防工业出版社, 1999.
PDF(2111 KB)

Accesses

Citations

Detail

Sections
Recommended

/