Study on Environmental Characteristics of Jovian System and Spacecraft Protection Design

WANG Jianzhao1, QIU Jiawen2, HUO Zhuoxi1

PDF(2818 KB)
PDF(2818 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (5) : 454-466. DOI: 10.15982/j.issn.2096-9287.2021.20210031
Topic:Deep Space Extreme Environment Protection and New Materials

Study on Environmental Characteristics of Jovian System and Spacecraft Protection Design

  • WANG Jianzhao1, QIU Jiawen2, HUO Zhuoxi1
Author information +
History +

Abstract

The Jovian system exploration is an important field of deep space exploration in China for the future. Environments in Jupiter’s system are very complex and the exploration of them is an important scientific goal. Besides that, such rigorous space environment is also a demanding factor for mission design. In this study, the characteristics and research progress of gravity field, magnetic field, atmosphere/exosphere, electromagnetic radiation, high-energy particle radiation, plasma, and meteoroids in Jupiter’s system are analyzed. The gravity field model is an important basis for the design of the orbit and propulsion subsystem and the redundant model needs to be built. Jovian strong magnetic field constraints the design of sensitive electromagnetic equipment in control subsystem. The main sources of electromagnetic radiation in Jupiter’s orbit include solar radiation, Jupiter/Satellite reflection radiation, and Jupiter infrared radiation. The exospheres of Jupiter’s moons are thin but include different kinds of atoms. The flux of plasma and high-energy particles in Jupiter’s orbit is much higher than that in Earth’s orbit. They can produce a variety of radiation effects. Among these the focus of protection is total dose and internal charging. The sources of meteoroids include interplanetary and Jovian system. The risk of surface degradation or breakdown caused by collision between meteoroids and spacecraft should be avoided.

Keywords

Jupiter system / spacecraft / space environment

Cite this article

Download citation ▾
WANG Jianzhao, QIU Jiawen, HUO Zhuoxi. Study on Environmental Characteristics of Jovian System and Spacecraft Protection Design. Journal of Deep Space Exploration, 2021, 8(5): 454‒466 https://doi.org/10.15982/j.issn.2096-9287.2021.20210031

References

[1] KIVELSON M G, KHURANA K K, RUSSELL C T, et al. Galileo Magnetometer measurements: a stronger case for a subsurface ocean at Europa[J]. Science,2000,289(5483):1340-1343
[2] 王建昭, 张庆祥, 田岱, 等. 木星系粒子辐射环境效应及防护关键技术[J]. 航天器环境工程,2018,35(5):500-510
WANG J Z, ZHANG Q X, TIAN D, et al. Radiation environmental effects of Jovian system and key technologies of radiation protection[J]. Spacecraft Environment Engineering,2018,35(5):500-510
[3] SCHUBERT G, SODERLUND K M. Planetary magnetic fields: observations and models[J]. Physics of the Earth and Planetary Interiors,2011,187(1):92-108
[4] BAGENAL F, ADRIANI A, ALLEGRINI F, et al. Magnetospheric science objectives of the juno mission[J]. Space?Science Reviews,2017,213(1):219-287
[5] WANG J Z, ZHANG Q X, ZHENG Y Z, et al. TID and internal charging evaluation for Jupiter orbiting mission[J]. IEEE Transactions on Nuclear Science,2019,66(2):557-566
[6] KAYALI S, MCALPINE W, BECKER H, et al. Juno radiation design and implementation [C]∥ IEEE Aerospace Conference. Big Sky, Montana, USA: IEEE, 2012: 1-7.
[7] 陈诗雨, 杨洪伟, 宝音贺西. 木星系探测及行星穿越任务轨迹初步设计[J]. 深空探测学报(中英文),2019,6(2):189-194
CHEN S Y, YANG H W, BAOYIN H X. Preliminary design for the trajectories of Jovian and planetary mission[J]. Journal of Deep Space Exporation,2019,6(2):189-194
[8] 王文强, 杨洪东, 杨广, 等. 太阳电池阵深空探测适应性设计概论[J]. 深空探测学报(中英文),2020,7(1):41-46
WANG W Q, YANG H D, YANG G, et al. Solar cell array design for deep space exploration missons[J]. Journal of Deep Space Exploration,2020,7(1):41-46
[9] 周成, 吴延龙, 魏延明, 等. 空间核电推进系统比质量优化建模及其木星探测应用分析[J]. 深空探测学报(中英文),2018,5(4):361-366
ZHOU C, WU Y L, WEI Y M, et al. Specific mass optimization modeling of space nuclear electric propulsion system for Jupiter exploration mission[J]. Journal of Deep Space Exploration,2018,5(4):361-366
[10] O’NEIL W J, AUSMAN N E, GLEASON J A, et al. Project Galileo at Jupiter[J]. Acta Astronautica,1997,40(2):477-509
[11] BOLTON S J, LUNINE J, STEVENSON D, et al. The Juno mission[J]. Space?Science Reviews,2017,213(1):5-37
[12] GRASSET O, DOUGHERTY M K, COUSTENIS A, et al. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterize the Jupiter system[J]. Planetary and Space Science,2013,78(1):1-21
[13] BAYER T, BITTNER M, BUFFINGTON B, et al. Europa clipper mission: preliminary design report [C] ∥ IEEE Aerospace Conference. Big Sky, Montana, USA: IEEE, 2019: 1-24.
[14] LESS L, FOLKNER W M, DURANTE D, et al. Measurement of Jupiter’s asymmetric gravity field[J]. Nature,2018,555(1):220-222
[15] BERTOTTI B, FARINELLA P, VOKROUHLICKY D. Physics of the Solar System [M]. Dordrecht: Springer Netherlands, 2003.
[16] CAPPUCCIO P, HICKEY A, DURANTE, et al. Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation[J]. Planetary and Space Science,2020,187:104902
[17] BAGENAL F, DOLS V. The space environment of Io and Europa[J]. Journal of Geophysical Research:Space Physics,2020,125(5):e2019JA027485
[18] COWLEY S W, NICHOLS J D, BUNCE E J. Distributions of current and auroral precipitation in Jupiter’s middle magnetosphere computed from steady-state hill-pontius angular velocity profiles: solutions for current sheet and dipole magnetic field models[J]. Planetary and Space Science,2002,50(7):717-734
[19] JOY S P, KIVELSON M G, WALKER R J, et al. Probabilistic models of the Jovian magnetopause and bow shock locations[J]. Journal of Geophysical Research:Space Physics,2002,107(A10):SMP49717-1-SMP
[20] WANG J, HUO Z, ZHANG L. A modular model of Jupiter's magnetospheric magnetic field based on Juno data[J]. Journal of Geophysical Research:Space Physics,2021,126:e2020JA029085
[21] CONNERNEY J E, KOTSIAROS S, OLIVERSEN R J, et al. A new model of Jupiter’s magnetic field from Juno’s first nine orbits[J]. Geophysical Research Letters,2018,45(6):4702590-2596
[22] MOORE K M, YADAV R K, KULOWSKI L, et al. A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field[J]. Nature,2018,561(7721):76-78
[23] CONNERNEY J E, ACUNA M H, NESS N F. Modeling the Jovian current sheet and inner magnetosphere[J]. Journal of Geophysical Research:Space Physics,1981,86(A10):8370-8384
[24] CONNERNEY J E, TIMMINS S, HERCEG M, et al. A Jovian magnetodisc model for the Juno era[J]. Journal of Geophysical Research:Space Physics,2020,125(10):e2020JA028138
[25] TRUSCOTT P, HEYNDERICK D, SICARD-PIET A, et al. Simulation of the radiation environment near Europa using the Geant4-based PLANETOCOSMICS-J model[J]. IEEE Transactions on Nuclear Science,2011,58(6):2776-2784
[26] SHOWMAN A P, MALHOTRA R. The Galilean satellites[J]. Science,1999,286(5437):77-84
[27] KOTSIAROS S, CONNERNEY J E, MARTOS Y M. Analysis of eddy current generation on the Juno spacecraft in Jupiter’s magnetosphere[J]. Earth and Space Science,2020,7(7):e2019EA001061
[28] CONNERNEY J E, BENN M, BJARNO J B, et al. The Juno magnetic field investigation[J]. Space Science Reviews,2017,213(1):39-138
[29] BAGENAL F, DOWLING T E, MCKINNON W B. Jupiter: the planet, satellites and magnetosphere [M]. Cambridge: Cambridge University Press, 2004: 689-698.
[30] SPENCER J R, TAMPPARI L K, MARTIN T Z, et al. Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies[J]. Science,1999,284:1514-1516
[31] SQUYRES S W, VEVERKA J. Color photometry of surface features on Ganymede and Callisto[J]. Icarus,1982,52(1):117-125
[32] EVIATAR A, VASYLIUNAS V M, GURNETT D A. The ionosphere of Ganymede[J]. Planetary and Space Science,2001,49(3):327-336
[33] MARCONI M L. A kinetic model of Ganymede’s atmosphere[J]. Icarus,2007,190(1):155-174
[34] DIVINE N, GARRETT H B. Charged particle distribution in Jupiter’s magnetosphere[J]. Journal of Geophysical Research:Space Physics,1983,88(A9):6889-6903
[35] MAUK B H, WILLIAMS D J, MCENTIRE R W. Energy-time dispersed charged particle signatures of dynamic injections in Jupiter's inner magnetosphere[J]. Geophysical Research Letters,1997,24(23):2949-2952
[36] MAUK B H, WILLIAMS D J, MCENTIRE R W, et al. Storm-like dynamics in Jupiter’s inner and middle magnetosphere[J]. Journal of Geophysical Research:Space Physics,1999,104(A10):22759-22778
[37] WILLIAMS D J, MAUK B H, MCENTIRE R W. Trapped electrons in Ganymede's magnetic field[J]. Geophysical Research Letters,1997,24(23):2953-2956
[38] GARRETT H B, EVANS R W, WHITTLESEY A C, et al. Modeling of the Jovian auroral environment and its effects on spacecraft charging[J]. IEEE Trans. Plasma Sci,2008,36(5):2440-2449
[39] SANTACRUZ M, GARRETT H B, EVANS R W, et al. An empirical model of the high-energy electron environment at Jupiter[J]. J Geophys Res:Space Phys,2016,121(10):9732-9743
[40] SICARD-PIET A, BOURDARIE S, KRUPP N. JOSE: a new Jovian specification environment model[J]. IEEE Transactions on Nuclear Science,2011,58(3):923-931
[41] SICARD-PIET A, BOURDARIE S, KRUPP N. Physical electron belt model from Jupiter’s surface to the orbit of Europa[J]. J Geophys Res:Space Phy,2004,109(A02216):1-13
[42] 王建昭, 田岱, 张庆祥, 等. 木星环绕探测任务中的内带电风险评估[J]. 深空探测学报(中英文),2017,4(6):264-570
WANG J Z, TIAN D, ZHANG Q X, et al. Internal charging evaluation in Jupiter exploration mission[J]. Journal of Deep Space Exploration,2017,4(6):264-570
[43] PARANICAS C, MAUK B H, Khurana K, et al. Europa’s near-surface radiation environment[J]. Geophysical Research Letters,2007,34(L15103):1-5
[44] GARRETT H, JUN I, EVANS R, et al. The latest Jovian-trapped proton and heavy ion models[J]. IEEE Transactions on Nuclear Science,2017,64(11):2802-2813
[45] JIGGENS P, HEYNDERICKX D, SANDBERG P, et al. Updated model of the solar energetic proton environment in space[J]. J. Space Weather Space Climate,2018,8(A31):1-22
[46] ESA Requirements and Standards Division. ECSS-E-ST-10-04C, Space environment standard[S]. Netherlands: ESA, 2008.
[47] FIESELER P D, ARDALAN S M, FREDERICKSON A R. The radiation effects on Galileo spacecraft systems at Jupiter[J]. IEEE Transactions on Nuclear Science,2002,49(6):1791-1815
[48] SANTACRUZ M, GARRETT H B, EVANS R W, et al. The GIRE2 model and its application to the Europa mission [C]∥ IEEE Aerospace Conference. Big Sky, Montana, USA: IEEE, 2016.
[49] PINTO M, GONCALVES P, MARQUES A, et al. Development of a directionality detector for RADEM, the radiation hard electron monitor aboard the JUICE mission[J]. IEEE Transactions on Nuclear Science,2019,66(7):1770-1777
[50] LEUNG P, WHITTLESEY A C, GARRETT H B, et al. Environment-induced electrostatic discharges as the cause of voyager 1 power-on resets[J]. J Spacecraft and Rockets,1986,23(3):323-330
[51] BEECKEN B P, ENGLUND J T, LAKE J J, et al. Application of AF-NUMIT2 to the modeling of deep dielectric spacecraft charging in the space environment[J]. IEEE Trans Plasma Sci,2015,43(9):2817-2827
[52] KIM W, CHINN J Z, KATZ I, et al. 3-D NUMIT: a general 3-D internal charging code[J]. IEEE Transactions on Plasma Science,2017,45(8):2298-2302
[53] SPAULDING M, EREMENKO A. Europa Clipper vault shielding optimization approach [C] ∥ IEEE Aerospace Conference. Big Sky, Montana, USA: IEEE, 2015: 1-6.
[54] 王建昭, 马继楠, 张庆祥, 等. 木星系探测中多层材料的辐射屏蔽优化设计方法[J]. 航天器环境工程,2019,36(6):601-606
WANG J Z, MA J N, ZHANG Q X, et al. Optimization design of radioprotection by multilayer materials in Jovian system exploration missions[J]. Spacecraft Environment Engineering,2019,36(6):601-606
[55] WANG J Z, MA J N, QIU J W, et al. Optimization design of radiation vault in Jupiter orbiting mission[J]. IEEE Transactions on Nuclear Science,2019,66(10):2179-2187
PDF(2818 KB)

Accesses

Citations

Detail

Sections
Recommended

/