Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph

WANG Xin1, ZHAO Qingjie1, XU Rui2,3

PDF(988 KB)
PDF(988 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (3) : 315-323. DOI: 10.15982/j.issn.2096-9287.2021.20210030
Article

Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph

  • WANG Xin1, ZHAO Qingjie1, XU Rui2,3
Author information +
History +

Abstract

Designing a deep-space flexible multi-agent probe capable of autonomous task planning is an important direction for future research and development of deep space exploration technology. Multi-agent deep-space probes involve multiple objects,complex constraints and the uncertain deep space environment in mission planning,but traditional mission planning languages may not describe mission planning accurately,intuitively and concisely. In this paper,a knowledge graph is proposed to represent the planning knowledge for a multi-agent deep space probe. The method first carries out knowledge extraction from the deep space probe,then associates the probe with its state and actions by knowledge fusion,and finally mines the potential relationships between agents by knowledge processing. Compared with MA-PDDL,the method proposed in this paper is simpler and more intuitive,which enables the probe to describe its mission planning autonomously,flexibly,and accurately.

Keywords

deep space exploration / mission planning / knowledge graph

Cite this article

Download citation ▾
WANG Xin, ZHAO Qingjie, XU Rui. Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph. Journal of Deep Space Exploration, 2021, 8(3): 315‒323 https://doi.org/10.15982/j.issn.2096-9287.2021.20210030

References

[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. The development of deep space exploration and key technologies in the future[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[2] STRAUB J. A review of spacecraft AI control systems[C]//The 15th World Multi-Conference on Systemics,Cybernetics and Informatics. Orlando,United States:[s. n.],2011.
[3] GILLEY G. Fault tolerant design and autonomous spacecraft[C]//The 3rd Computers in Aerospace Conference. San Diego,CA,USA:[s. n.],2013:342-348.
[4] 王晓晖,李爽. 深空探测器约束简化与任务规划方法研究[J]. 宇航学报,2016,37(7):768-774
WANG X H,LI S. Research on deep space probe constraint simplification and mission planning method[J]. Acta Aeronautica ETAs-tronautica Sinica,2016,37(7):768-774
[5] 朱立颖,叶志玲,李玉庆,等. 小天体探测自主绕飞智能规划建模[J]. 深空探测学报,2019,6(5):463-469
ZHU L Y,YE Z L,LI Y Q,et al. Intelligent planning modeling for autonomous orbiting small celestial body detection[J]. Journal of Deep Space Exploration,2019,6(5):463-469
[6] 吴坤,刘玮,李爽,等. 一种动态环境下多Agent的协作方法[J]. 武汉工程大学学报,2017,39(2):186-192
WU K,LIU W,LI S,et al. A method of multi-agent cooperation in dynamic environment[J]. Journal of Wuhan Institute of Technology,2017,39(2):186-192
[7] FIER D,KOMENDA A. Concise finite-domain representations for factored MA-PDDL planning tasks[C]//10th International Conference on Agents and Artificial Intelligence. Sanibel Island, USA: [s. n.], 2018.
[8] 李涓子,侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版),2017,40(3):454-459
LI J Z,HOU L. Summary of knowledge graph research[J]. Journal of Shanxi University(Natural Science Edition),2017,40(3):454-459
[9] HELING L,BENSMANN F,ZAPILKO B,et al. Building knowledge graphs from survey data:a use case in the social sciences(extended version)[C]//Extended semantic web conference. [S. l.]: ESWC, 2019.
[10] 林一松,秦祎,秦浩炜. 知识图谱在金融行业的应用研究[J]. 经济管理文摘,2020,754(16):25-26
LIN Y S,QIN W,QIN H W. Research on the application of knowledge graph in the financial industry[J]. Economic Management Digest,2020,754(16):25-26
[11] 夏宇航,高大启,阮彤,等. 基于知识图谱的医疗病历数据存储研究[J]. 计算机工程,2019,45(1):9-16,22
XIA Y H,GAO D Q,RUAN T,et al. Research on medical record data storage based on knowledge graph[J]. Computer Engineering,2019,45(1):9-16,22
[12] 张玥,赵辰光. 基于科学知识图谱的我国政府执行力研究热点透析[J]. 中国管理信息化,2018,21(23):192-194
ZHANG Y,XHAO C G. An analysis of the research hotspots of chinese government executive power based on the atlas of scientific knowledge[J]. China Management Information,2018,21(23):192-194
[13] 赫中翮. 面向中文知识图谱构建的知识抽取方法研究与实现[D]. 合肥:国防科学技术大学,2019.
HE Z H. Research and implementation of knowledge extraction method for chinese knowledge graph construction[D]. Hefei:National Defense Science and Technology Conference,2019.
[14] SMIRNOVA A,CUDREMAUROUX P. Relation extraction using distant supervision:a survey[J]. ACM Computing Surveys,2019,51(5):106.1-106.35
[15] WU G,TANG G,WANG Z,et al. An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition[J]. IEEE Access,2019,7:113942-113949
[16] WHANG S E,GUPTA R,HALEVY A. ReNoun:fact extraction for nominal attributes[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: [s. n.], 2014.
[17] NGUYEN H L,DANG T V,JUNG J J. Knowledge graph fusion for smart systems:a survey[J]. Information Fusion,2020,61(4):56-70
[18] 官赛萍,靳小龙,贾岩涛,等. 面向知识图谱的知识推理研究进展[J]. 软件学报,2018,29(10):2966-2994
GUAN S P,JIN X L,JIA Y T,et al. Research progress of knowledge reasoning oriented to knowledge graph[J]. Journal of Software,2018,29(10):2966-2994
[19] HONG W,XU W,QI J W,et al. Neural tensor network for multi-label classification[J]. IEEE Access,2019,99:1-1
[20] BABYCH T,GOROKHOVSKYI S. Building and storing in graph database neo4j abstract symantic graph of php applications source code[J]. NaUKMA Research Papers Computer Science,2020,3:27-30
PDF(988 KB)

Accesses

Citations

Detail

Sections
Recommended

/