PDF(988 KB)
Modeling of Mission Planning for Deep Space Probe Based on Knowledge Graph
- WANG Xin1, ZHAO Qingjie1, XU Rui2,3
Author information
+
1. School of Computer Science,Beijing Institute of Technology,Beijing 100081,China;
2. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
3. Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration, Ministry of Industry and Information Technology, Beijing 100081, China
Show less
History
+
Received |
Revised |
Published |
25 Apr 2021 |
01 May 2021 |
20 Jun 2021 |
Issue Date |
|
20 Jun 2021 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. The development of deep space exploration and key technologies in the future[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[2] STRAUB J. A review of spacecraft AI control systems[C]//The 15th World Multi-Conference on Systemics,Cybernetics and Informatics. Orlando,United States:[s. n.],2011.
[3] GILLEY G. Fault tolerant design and autonomous spacecraft[C]//The 3rd Computers in Aerospace Conference. San Diego,CA,USA:[s. n.],2013:342-348.
[4] 王晓晖,李爽. 深空探测器约束简化与任务规划方法研究[J]. 宇航学报,2016,37(7):768-774
WANG X H,LI S. Research on deep space probe constraint simplification and mission planning method[J]. Acta Aeronautica ETAs-tronautica Sinica,2016,37(7):768-774
[5] 朱立颖,叶志玲,李玉庆,等. 小天体探测自主绕飞智能规划建模[J]. 深空探测学报,2019,6(5):463-469
ZHU L Y,YE Z L,LI Y Q,et al. Intelligent planning modeling for autonomous orbiting small celestial body detection[J]. Journal of Deep Space Exploration,2019,6(5):463-469
[6] 吴坤,刘玮,李爽,等. 一种动态环境下多Agent的协作方法[J]. 武汉工程大学学报,2017,39(2):186-192
WU K,LIU W,LI S,et al. A method of multi-agent cooperation in dynamic environment[J]. Journal of Wuhan Institute of Technology,2017,39(2):186-192
[7] FIER D,KOMENDA A. Concise finite-domain representations for factored MA-PDDL planning tasks[C]//10th International Conference on Agents and Artificial Intelligence. Sanibel Island, USA: [s. n.], 2018.
[8] 李涓子,侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版),2017,40(3):454-459
LI J Z,HOU L. Summary of knowledge graph research[J]. Journal of Shanxi University(Natural Science Edition),2017,40(3):454-459
[9] HELING L,BENSMANN F,ZAPILKO B,et al. Building knowledge graphs from survey data:a use case in the social sciences(extended version)[C]//Extended semantic web conference. [S. l.]: ESWC, 2019.
[10] 林一松,秦祎,秦浩炜. 知识图谱在金融行业的应用研究[J]. 经济管理文摘,2020,754(16):25-26
LIN Y S,QIN W,QIN H W. Research on the application of knowledge graph in the financial industry[J]. Economic Management Digest,2020,754(16):25-26
[11] 夏宇航,高大启,阮彤,等. 基于知识图谱的医疗病历数据存储研究[J]. 计算机工程,2019,45(1):9-16,22
XIA Y H,GAO D Q,RUAN T,et al. Research on medical record data storage based on knowledge graph[J]. Computer Engineering,2019,45(1):9-16,22
[12] 张玥,赵辰光. 基于科学知识图谱的我国政府执行力研究热点透析[J]. 中国管理信息化,2018,21(23):192-194
ZHANG Y,XHAO C G. An analysis of the research hotspots of chinese government executive power based on the atlas of scientific knowledge[J]. China Management Information,2018,21(23):192-194
[13] 赫中翮. 面向中文知识图谱构建的知识抽取方法研究与实现[D]. 合肥:国防科学技术大学,2019.
HE Z H. Research and implementation of knowledge extraction method for chinese knowledge graph construction[D]. Hefei:National Defense Science and Technology Conference,2019.
[14] SMIRNOVA A,CUDREMAUROUX P. Relation extraction using distant supervision:a survey[J]. ACM Computing Surveys,2019,51(5):106.1-106.35
[15] WU G,TANG G,WANG Z,et al. An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition[J]. IEEE Access,2019,7:113942-113949
[16] WHANG S E,GUPTA R,HALEVY A. ReNoun:fact extraction for nominal attributes[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: [s. n.], 2014.
[17] NGUYEN H L,DANG T V,JUNG J J. Knowledge graph fusion for smart systems:a survey[J]. Information Fusion,2020,61(4):56-70
[18] 官赛萍,靳小龙,贾岩涛,等. 面向知识图谱的知识推理研究进展[J]. 软件学报,2018,29(10):2966-2994
GUAN S P,JIN X L,JIA Y T,et al. Research progress of knowledge reasoning oriented to knowledge graph[J]. Journal of Software,2018,29(10):2966-2994
[19] HONG W,XU W,QI J W,et al. Neural tensor network for multi-label classification[J]. IEEE Access,2019,99:1-1
[20] BABYCH T,GOROKHOVSKYI S. Building and storing in graph database neo4j abstract symantic graph of php applications source code[J]. NaUKMA Research Papers Computer Science,2020,3:27-30