Structural Design and Optimization of Φ5 m Diameter Large Arrow Body

LUO Hongzhi, GUO Yanming, WU Huiqiang

PDF(2236 KB)
PDF(2236 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (4) : 380-388. DOI: 10.15982/j.issn.2096-9287.2021.20210021
Topic:Technology of Long March 5 Launch Vehicle
Topic:Technology of Long March 5 Launch Vehicle

Structural Design and Optimization of Φ5 m Diameter Large Arrow Body

  • LUO Hongzhi, GUO Yanming, WU Huiqiang
Author information +
History +

Abstract

The launch vehicle structure, as one of the important systems of launch vehicle, is the foundation of launch vehicle and directly relates to the overall performance of the launch vehicle. A series of technical problems are faced with the huge leap from Φ3.35 m to Φ5 m in the product size of the launch vehicle structure. To solve these problems, a set of theoretical and methodological system suitable for the design of the Φ5 m launch vehicle structure products is established by adopting innovative design concept. At the same time, the upgrading of the material system of launch vehicle structure is vigorously promoted. With the implementation of these methods, the product system of the Φ5m launch vehicle structure, and the fine design and multi-function integrated design of the Φ5 m launch vehicle structure are realized.

Keywords

launch vehicle structure / Φ5 m / topological optimization / structure design

Cite this article

Download citation ▾
LUO Hongzhi, GUO Yanming, WU Huiqiang. Structural Design and Optimization of Φ5 m Diameter Large Arrow Body. Journal of Deep Space Exploration, 2021, 8(4): 380‒388 https://doi.org/10.15982/j.issn.2096-9287.2021.20210021

References

[1] 丁文华,邓晓亮,王基祥,等. 世界航天运载器大全[M]. 北京:中国宇航出版社,2007.
DING W H,DENG X L,WANG J X,et al. Complete book of world's spacecraft[M]. Beijing:China Aerospace Publishing House,2007.
[2] 何巍,刘伟,龙乐豪. 重型运载火箭及其应用探讨[J]. 导弹与航天运载技术,2011(1):1-5
HE W,LIU W,LONG L H. Heavy launch vehicle and its application[J]. Missiles and Space Vehicles,2011(1):1-5
[3] 王心清,李兴泉,吴德隆,等. 结构设计[M]. 北京:宇航出版社,1994.
WANG X Q,LI X Q,WU D L,et al. Structure design[M]. Beijing:Aerospace Publishing House,1994.
[4] 李东,王珏,何巍,等. 长征五号运载火箭总体方案及关键技术[J]. 导弹与航天运载技术,2017(3):1-5
LI D,WANG J,HE W,et al. The general scheme and key technologies of CZ-5 launch vehicle[J]. Missiles And Space Vehicles,2017(3):1-5
[5] NASA Space Vehicle Design Criteria(Structures). Buckling of thin-walled circular cylinders:NASA SP-8007[R]. Washington DC:NASA,1968.
[6] 刘竹生,张博戎. 运载火箭总体设计多学科优化方法发展及展望[J]. 宇航总体技术,2017(2):1-6
LIU Z S,ZHANG B R. An overview of multidisciplinary optimization method in launch vehicle design[J]. Astronautical Systems Engineering Technology,2017(2):1-6
[7] 张俊华,张绪香,吕玉林,等. 导弹结构强度计算手册[M]. 北京:国防工业出版社,1978.
ZHANG J H,ZHANG X X,LV Y L,et al. Missile structural strength calculation manual[M]. Beijing:National Defence Industry Press,1978.
[8] 张骏华,盛祖铭,孙继桐. 复合材料结构设计指南[M]. 北京:宇航出版社,1994.
ZHANG J H,SHENG Z M,SUN J T. Guidelines for the design of composite steuctures[M]. Beijing:Aerospace Publishing House,1994.
[9] 姚君山,周万盛. 航天贮箱结构材料及其焊接技术的发展[J]. 航天制造技术,2002,10(5):21-26
YAO J S,ZHOU W S. The development of materials and welding technology of the tank[J]. Aerospace Manufacturing Technology,2002,10(5):21-26
[10] 宋建岭,李超. 搅拌摩擦焊在运载火箭贮箱制造中的应用与发展[J]. 焊接,2018(5):21-27
SONG J L,LI C. Application of FSW technology to tank manufacturing of launch vehicle and its development[J]. Welding & Joining,2018(5):21-27
[11] 许云峰. 搅拌摩擦焊的缺陷类型及其检测技术[J]. 航空制造技术,2012(13):77-79
XU Y F. Defect type of friction stir welding and inspection technology[J]. Aeronautical Manufacturing Technology,2012(13):77-79
[12] 鄢东洋,郭彦明,董曼红,等. 贮箱结构用2A14和2219铝合金的特性研究与分析[J]. 导弹与航天运载技术,2019(3):102-107
YAN D Y,GUO Y M,DONG M H,et al. Analysis and discuss on the characteristics of 2a14 and 2219 aluminium alloy used in the rocket tank[J]. Missiles and Space Vehicles,2019(3):102-107
[13] 孙忠绍,刘宪力,刘欣. 航天低温贮箱箱底焊接工艺[J]. 航天工艺,1999(6):1-3
SUN Z S,LIU X L,LIU X. Welding technology for the dome of aerospace cryogenic tank[J]. Aerospace Technology,1999(6):1-3
[14] DAVID B. Global optimum design of externally pressurized isogrid stiffened cylindrical shells with added T-rings[J]. International Journal of Non-linear Mechanics,2002,37:801-831
[15] 梅勇,冯韶伟. 大推力捆绑运载火箭传力路径优化设计[J]. 导弹与航天运载技术,2017(4):6-9,29
MEI Y,FENG S W. An optimization design for the force transmission path on the high-thrust strap-on launch vehicle[J]. Missiles And Space Vehicles,2017(4):6-9,29
[16] HUYBRECHTS T. Analysis and behavior of grid structures[J]. Science and Technology,1996,56:1001-1015
[17] 杨柳,阳志光,王鲲鹏. 网格加筋壳结构局部受热轴压承载能力分析[J]. 强度与环境,2010,37(2):17-23
YANG L,YANG Z G,WANG K P,et al. Carrying capacity of shell stiffened with grid under axial compression and local heating[J]. Structure & Environment Engineering,2010,37(2):17-23
[18] 范瑞祥,张晓颖,黄诚,等. 等边三角形网格加筋壳轴压承载研究[J]. 强度与环境,2014(4):33-40
FAN R X,ZHANG X Y,HUANG C,et al. Research on stability and critical load of isogrid stiffened cylinder under axial compression[J]. Structure & Environment Engineering,2014(4):33-40
[19] 郝鹏. 面向新一代运载火箭的网格加筋柱壳结构优化研究[D]. 大连:大连理工大学,2013.
HAO P. Optimum design of stiffened shell structures for new generation launch vehicle[D]. Dalian:Dalian University of Technology,2013.
[20] 尕永婧,王浩苏,张青松,等. 垂直着 陆过程推进剂流动行为特性及影响分析[J]. 深空探测学报(中英文),2021,8(1):42-50
GA Y J,WANG H S,ZHANG Q S,et al. Propellant flow characteristics in tank and related impact analysis during the vertical landing stage[J]. Journal of Deep Space Exploration,2021,8(1):42-50
[21] 陈献平,鄢东洋,姚瑞娟,等. 轻质箭体结构优化设计[J]. 导弹与航天运载技术,2019(2):17-21+43
CHEN X P,YAN D Y,YAO R J,et al. Optimization design of the rocket structure[J]. Missiles and Space Vehicles,2019(2):17-21+43
[22] 赵旭亚. 蜂窝铝夹芯板的剪切、压缩力学性能研究[D]. 秦皇岛:燕山大学,2017.
ZHAO X X. Quasi-static shear and compression tests on sandwich panel of aluminum honeycomb[D]. Qinhuangdao:Yanshan University,2017.
[23] The Boeing Company. MDC H3224D,Delta payload planners guide[S]. Chicago:The Boeing Company,1996.
[24] JOHN P E,PETER W,ADRIAN V,et al. Design and testing of the minotaur advanced grid-stiffened fairing[J]. Composite Structures,2004,66:339-349
[25] WILLIAM O H,ANNE M. Acoustic testing of the cassini spacecraft and titan iv payload fairing[C]//67th Shock and Vibration Conference. Arlington, VA: [s. n.], 1996: 18-22.
[26] 韩涵. 运载火箭加筋壳结构稳定性分析[D]. 长沙:国防科技大学,2005.
HAN H. Stability analysis of stiffened shell structure of launch vehicle[D]. Changsha:National University of Denfense Technology,2005.
[27] 郝鹏,王博,邹威任,等. 基于RBF模型的蒙皮桁条结构减轻孔优化[J]. 固体火箭技术,2015(5):717-721
HAO P,WANG B,ZOU W R,et al. Optimum design of lightening holes for skin-stringer structures based on RBF model[J]. Journal of Solid Rocket Technology,2015(5):717-721
[28] 李显,宋永伦,卢振洋,等. 2219 铝合金高频耦合脉冲TIG 焊接工艺[J]. 焊接学报,2015,36(5):17-20
LI X,SONG Y L,LU Z Y,et al. High frequency energy coupling pulsed TIG welding process on 2219 aluminum alloy[J]. Transactions of the China Welding Institution,2015,36(5):17-20
[29] SLYLY P,DYER J E. Isogrid structures[J]. American Institute of Aeronautics and Astronautics,1975
PDF(2236 KB)

Accesses

Citations

Detail

Sections
Recommended

/