Accurate Matching Algorithm of Small Celestial Body Surface Texture Curve

WANG Guangze1, SHAO Wei1, CHI Hongliang1, YAO Wenlong1, HUANG Xiangyu2

PDF(2061 KB)
PDF(2061 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (3) : 306-314. DOI: 10.15982/j.issn.2096-9287.2021.20200096
Article

Accurate Matching Algorithm of Small Celestial Body Surface Texture Curve

  • WANG Guangze1, SHAO Wei1, CHI Hongliang1, YAO Wenlong1, HUANG Xiangyu2
Author information +
History +

Abstract

Irregular curves are often used as navigation landmark in the landing of celestial probes. Accurate matching of curves is an important premise for visual navigation. For the problem that curve descriptor matching algorithm are difficult to accurately match and curvature matching algorithm can only handle a pair of curves,an accurate curve matching algorithm combining curve descriptor and curvature is proposed. The curves are extracted by Edge Drawing algorithm first; then the descriptors for curves and supporting regions are built,and the rough matching is completed based on Nearest Neighbor Distance Ratio. After,the unsigned curvature integral is calculated and the curvature is sampled at equal integration intervals. The accurate curve matching is realized based on Normalized Cross Correlation. The experimental results demonstrate that,the algorithm can achieve more than 84% accurate matching rate under scale,rotation and illumination transformations.

Keywords

small celestial;curve descriptor / scale invariant curvature / normalized cross correlation

Cite this article

Download citation ▾
WANG Guangze, SHAO Wei, CHI Hongliang, YAO Wenlong, HUANG Xiangyu. Accurate Matching Algorithm of Small Celestial Body Surface Texture Curve. Journal of Deep Space Exploration, 2021, 8(3): 306‒314 https://doi.org/10.15982/j.issn.2096-9287.2021.20200096

References

[1] 崔平远,贾贺,朱圣英. 小天体不规则度与光学导航质心提取及应用[J]. 宇航学报,2021,42(1):83-91
CUI P Y,JIA H,ZHU S Y. Asteroid irregularity degree and application in centroid extraction of optical navigation[J]. Journal of Astronautics,2021,42(1):83-91
[2] TSUDA Y,YOSHIKAWA M,SAIKI T,et al. Hayabusa2–sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica,2019,156:387-393
[3] 张哲,孙瑾,杨刘涛. 融合相关滤波与关键点匹配的跟踪算法[J]. 光学学报,2019,39(2):259-267
ZHANG Z,YANG J,YANG L T. Tracking algorithm based on correlation filter fusing with keypoint matching[J]. Acta Optica Sinica,2019,39(2):259-267
[4] 修春波,马云菲,潘肖楠. 基于距离融合的图像特征点匹配方法[J]. 计算机应用,2019,39(11):3158-3162
XIU C B,MA Y F,PAN X N. Image feature point matching method based on distance fusion[J]. Journal of Computer Applications,2019,39(11):3158-3162
[5] 李鹤宇,王青. 一种具有实时性的SIFT特征提取算法[J]. 宇航学报,2017,38(8):865-871
LI H Y,WANG Q. A Real-time SIFT feature extraction algorithm[J]. Journal of Astronautics,2017,38(8):865-871
[6] BAKAMBU J N,LANGLEY C,PUSHPANATHAN G,et al. Field trial results of planetary rover visual motion estimation in Mars analogue terrain[J]. Journal of Field Robotics,2012,29(3):413-425
[7] 胡涛,贺亮,曹涛,等. 行星陨石坑检测算法研究综述[J]. 载人航天,2020,26(5):656-663
HU T,HE L,CAO T,et al. Review of planetary crater detection algorithms[J]. Manned Spaceflight,2020,26(5):656-663
[8] 田阳,李国庆,宋新. 一种三维地形特征提取和匹配方法[J]. 宇航学报,2018,39(6):690-696
TIAN Y,LI GUO Q,SONG X. A novel 3D terrain feature detecting and matching method[J]. Journal of Astronautics,2018,39(6):690-696
[9] 郑磊,胡维多,刘畅. 基于深度学习的大型陨石坑识别方法研究[J]. 北京航空航天大学学报,2020,46(5):994-1004
ZHENG L,HU W D,LIU C. Large crater identification method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2020,46(5):994-1004
[10] 邵巍,陈海燕,孟琳,等. 基于鲁棒曲线匹配的星表特征跟踪方法[J]. 深空探测学报(中英文),2014,1(1):75-80
SHAO W,CHEN H Y,MENG L,et al. Planetary terrain features tracking method based on robust curve matching[J]. Journal of Deep Space Exploration,2014,1(1):75-80
[11] CUI P Y,GAO X Z,ZHU S Y,et al. Visual navigation based on curve matching for planetary landing in unknown environments[J]. Acta Astronautica,2020,170:261-274
[12] LIU H,ZHI S,WANG Z. IOCD:Intensity order curve descriptor[J]. International Journal of Pattern Recognition & Artificial Intelligence,2013,27(7):980-985
[13] 王志衡,智珊珊,刘红敏. 基于亮度序的均值标准差描述子[J]. 模式识别与人工智能,2013,26(4):409-416
WANG Z H,ZHI S S,LIU H M. Intensity order based mean-standard deviation descriptor[J]. Pattern Recognition and Artificial Intelligence,2013,26(4):409-416
[14] LIU H,CHEN L,WANG Z,et al. GOCD:Gradient order curve descriptor[J]. IEICE TRANSACTIONS on Information and Systems,2017,100(12):2973-2983
[15] COHEN F S,HUANG Z,YANG Z. Invariant matching and identification of curves using B-splines curve representation[J]. IEEE Transactions on Image Processing,1995,4(1):1-10
[16] TANIAI T,MATSUSHITA Y,SATO Y,et al. Continuous 3D label stereo matching using local expansion moves[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,40(11):2725
[17] 刘双印. 三维自由曲线的立体匹配及重构方法[D]. 成都:电子科技大学,2018.
LIU S Y. Stereo matching and reconstruction of three dimensional free curve[D]. Chengdu:University of Electronic Science and Technology of China,2018.
[18] CUI M,FEMIANI J,HU J,et al. Curve matching for open 2D curves[J]. Pattern Recognition Letters,2009,30(1):1-10
[19] TOPAL C,AKINLAR C. Edge drawing:a combined real-time edge and segment detector[J]. Journal of Visual Communication and Image Representation,2012,23(6):862-872
[20] ZHANG L,KOCH R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation,2013,24(7):794-805
[21] 李莎莎,徐惠霞,邓重阳. 数据点加权最小二乘渐进迭代逼近及其B样条曲线拟合[J]. 计算机辅助设计与图形学学报,2019,31(9):1574-1580
LI S S,XU H X,DENG C Y. Data-weighted least square progressive and iterative approximation and related B-spline curve fitting[J]. Journal of Computer-Aided Design & Computer Graphics,2019,31(9):1574-1580
[22] 黄世泽,陈威,张帆,等. 基于弗雷歇距离的道岔故障诊断方法[J]. 同济大学学报(自然科学版),2018,46(12):1690-1695
HUANG S Z,CHEN W,ZHANG F,et al. Method of turnout fault diagnosis based on Fréchet distance[J]. Journal of Tongji University(Natural Science),2018,46(12):1690-1695
PDF(2061 KB)

Accesses

Citations

Detail

Sections
Recommended

/