Variable Coefficient Terminal-Phase Guidance Design for Deep Space High-Speed Impact

ZHENG Huixin1,2, PENG Yuming1,2, WANG Wei1,2, XIE Pan1,2, LU Xi1,2, LI Haiyang1,2, CHEN Xiao1,2

PDF(2625 KB)
PDF(2625 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (5) : 511-518. DOI: 10.15982/j.issn.2096-9287.2021.20200095
Article

Variable Coefficient Terminal-Phase Guidance Design for Deep Space High-Speed Impact

  • ZHENG Huixin1,2, PENG Yuming1,2, WANG Wei1,2, XIE Pan1,2, LU Xi1,2, LI Haiyang1,2, CHEN Xiao1,2
Author information +
History +

Abstract

Asteroid impact poses a major threat to human survival. High-speed direct impact is a feasible and effective means to change the orbit of an asteroid. This paper takes Bennu, a potentially hazardous asteroid, as an object to design the terminal guidance law of deep space high-speed impact. In view of the characteristics of high relative speed and high impact accuracy, the acceleration command is derived based on the Augmented Proportional Navigation Guidance law (APNG), considering the acceleration of the target. Moreover, the proportional coefficient is designed as a function of the relative distance to meet both the requirements of minimum fuel consumption and maximum impact accuracy. An ignition strategy is designed to convert the continuous command into impulse command, without the need to give maneuvering time in advance. The simulation results show the effectiveness of the proposed algorithm. The miss distance constraint is satisfied, and the ignition times and fuel consumption are less than those of the constant proportional coefficient algorithm.

Keywords

asteroid impact / variable coefficient guidance law / deep space high-speed impact / Augmented Proportional Navigation

Cite this article

Download citation ▾
ZHENG Huixin, PENG Yuming, WANG Wei, XIE Pan, LU Xi, LI Haiyang, CHEN Xiao. Variable Coefficient Terminal-Phase Guidance Design for Deep Space High-Speed Impact. Journal of Deep Space Exploration, 2021, 8(5): 511‒518 https://doi.org/10.15982/j.issn.2096-9287.2021.20200095

References

[1] 马鹏斌, 宝音贺西. 近地小行星威胁与防御研究现状[J]. 深空探测学报(中英文),2016,3(1):10-17
MA P B, BAOYIN H X. Research status of the near-Earth asteroids' hazard and mitigation[J]. Journal of Deep Space Exploration,2016,3(1):10-17
[2] NASA. Near-Earth object survey and deflection analysis of alternatives, report to congress[R]. Washington, DC: NASA, 2007.
[3] WIE B. Dynamics and control of gravity tractor spacecraft for asteroid deflection[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1413-1423
[4] MILLER S D, STRAKA W C, BACHMEIER A S, et al. Earth-viewing satellite perspectives on the Chelyabinsk meteor event[J]. Proceedings of the National Academy of Sciences,2013,110(45):18092-18097
[5] 王艺睿, 李明涛. 动能撞击小行星防御轨道优化设计[J]. 空间碎片研究,2019,19(3):43-49
WANG Y M, LI M T. Orbital design and optimization of kinetic impactor for asteroid deflection[J]. Space Debris Research,2019,19(3):43-49
[6] 李毅, 陈鸿, 兰胜威, 等. 一种提升近地小行星防御中拦截效率的方法[J]. 航天器环境工程,2017,34(6):585-592
LI Y, CHEN H, LAN S W, et al. A method to improve interception efficiency in the defense against near-Earth asteroids[J]. Spacecraft Environmental Engineering,2017,34(6):585-592
[7] 韩柠, 刘辉, 王云财, 等. 基于比例导引的深空撞击脉冲导引律设计[J]. 动力学与控制学报,2019,17(1):86-90
HAN N, LIU H, WANG Y C, et al. Pulse guidance law for deep space impact base on the proportional guidance[J]. Journal of Dynamics and Control,2019,17(1):86-90
[8] RUSSEL C T. 深度撞击计划: 解密彗星之旅[M]. 陈小前, 蔡洪, 陈磊, 译. 北京: 国防工业出版社, 2008: 85- 86.
[9] WILLIAM H B. Deep impact mission design[J]. Space Science Reviews,2005,117(1-2):23-42
[10] 朱圣英, 崔平远, 崔祜涛. 小天体高速撞击器视线制导律设计[J]. 宇航学报,2010,31(2):373-379
ZHU S Y, CUI P Y, CUI G T. Design of line-of-sight guide law for small body high speed impactors[J]. Journal of Astronautics,2010,31(2):373-379
[11] 汤国建, 贾沛然. 运用比例导引实现对目标卫星的拦截[J]. 系统工程与电子技术,2001,23(2):25-27,64
TANG J G, JIA P R. Implementation of intercepting satellite by using proportional guidance[J]. Systems Engineering and Electronics,2001,23(2):25-27,64
[12] HAWKINS M, PITZ A, WIE B, et al. Terminal-phase guidance and control analysis of asteroid interceptors[C]// AIAA Guidance, Navigation, and Control Conference. [S. l.]: AIAA, 2013.
[13] ZARCHAN P. Tactical and strategic missile guidance[M]. Washington, DC: American Institute of Aeronautics and Astronautics, Inc. , 2012.
[14] 李雯雯, 姜长生. BTT导弹增广比例导引律研究[J]. 电光与控制,2008(10):16-20
LI W W, JIANG C S. Augmented proportional navigation guidance law for BTT missile[J]. Electronics Optics and Control,2008(10):16-20
[15] 周卫文, 梁晓庚, 贾晓洪. 小天体撞击末段脉冲比例制导律研究[J]. 电光与控制,2011(6):73-77
ZHOU W W, LIANG X G, JIA X H. End-stage guidance for impacting small asteroids using pulsed proportional guidance law[J]. Electronics Optics and Control,2011(6):73-77
[16] NEOys. latest published data [EB/OL]. (2018-11-24) [2021-07-13]. https://newton.spacedys.com/neodys/.
[17] SHAMPINE L F, REICHELT M W. The Matlab ODE suite[J]. SIAM Journal on Scientific Computing,1997,18:1-22
PDF(2625 KB)

Accesses

Citations

Detail

Sections
Recommended

/