Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector

LI Kangkang1,2, GU Defeng1,2, AN Zicong1,2, SONG Jianing1,2, ZHU Jubo1,2

PDF(3207 KB)
PDF(3207 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (2) : 182-189. DOI: 10.15982/j.issn.2096-9287.2021.20200081
Article
Article

Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector

  • LI Kangkang1,2, GU Defeng1,2, AN Zicong1,2, SONG Jianing1,2, ZHU Jubo1,2
Author information +
History +

Abstract

Aiming at the precise orbit determination of Space gravitational wave detector,LISA(Laser Interferometer Space Antenna)is selected as the research object to establishs the target simulation environment,detect simulates the generation of the ranging and velocity measurement data at different stations by American Deep Space Network(Deep Space Network)Network(DSN) and China Deep Space Network(CDSN). The accuracy of LISA orbit determination is investigated in terms of the tracking arc length,measurement data types,also the quantity and distribution of ground stations by utilizing the Nonlinear Weighted Least Squares (WLS) and Monte Carlo(MC)methods. The simulation results show that:① Increasing the tacking arc length can effectively improve the orbit determination precision. Moreover,the position accuracy of the estimated detector reaches 92m when the tracking arc is 20 days;② Under the current measurement accuracy,the performance of the LISA orbit determination is considerably determined by the ranging data. The combined ranging/Doppler orbit determination method gains a growth of 32.23% and 99.52% estimating position accuracy,compared with the only ranging and only Doppler orbit determination strategies,respectively;③ By utilizing multiple deep space networks,the common viewing rate of multi stations increases markedly,improving the accuracy and the convergence of the orbit determination. The performance of the joined DSN/CDSN orbit determination scheme is compared to the only DSN scheme by different arc lengths,with an increment of the average position accuracy of 43.73%.

Keywords

deep space network / initial orbit determination / space gravitational wave detection / nonlinear weighted least squares / LISA

Cite this article

Download citation ▾
LI Kangkang, GU Defeng, AN Zicong, SONG Jianing, ZHU Jubo. Simulation and Analysis of Orbit Determination of Space Gravitational Wave Detector. Journal of Deep Space Exploration, 2021, 8(2): 182‒189 https://doi.org/10.15982/j.issn.2096-9287.2021.20200081

References

[1] ABBOTT B P,ABBOTT R,ABBOTT T D,et al. GW150914:the advanced LIGO detectors in the era of first discoveries[J]. Physical Review Letters,2016,116(13):131103
[2] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447
LUO Z R,BAI S,BIAN X,et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013,43(4):415-447
[3] BENDER P L,BRILLET A,CIUFOLINI I,et al. Laser interferometer space antenna for the detection and observation of gravitational waves[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1998,96(10):1500-1501.
[4] AMARO-SEOANE P,AUDLEY H,BABAK S,et al. Laser interferometer space antenna[EB/OL]. (2017-2-23)[2020-11-25]. https://arxiv.org/abs/1702.00786v1.
[5] WANG G,NI W T. Numerical simulation of time delay interferometry for TAIJI and new LISA[J]. Research in Astronomy and Astrophysics,2019,19(4):58
[6] DANZMANN K,LISA Study Team. Laser interferometer space antenna:a cornerstone mission for the observation of gravitational waves[J]. Advances in Space Research,2003,32(7):1233-1242.
[7] TINTO M,DHURANDHAR S V. Time-delay interferometry[J]. Living Reviews in Relativity,2014,17(1):6
[8] TINTO M,ARMSTRONG J W. Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation[J]. Physical Review D,1999,59(10):102003
[9] MERKOWITZ S M,AHMAD A,HYDE T T,et al. LISA propulsion module separation study[J]. Classical and Quantum Gravity,2005,22(10):S413
[10] KRUIZINGA G L,GUSTAFSON E D,THOMPSON P F,et al. Mars Science Laboratory Orbit Determination 2012[C]//23rd International Symposium on Space Flight Dynamics. Pasadena,CA,USA:[s. n.],2012.
[11] 曹建峰,张宇,胡松杰,等. 嫦娥三号着陆器精确定位与精度分析[J]. 武汉大学学报(信息科学版),2016,41(2):274-278
CAO J F,ZHANG Y,HU S J,et al. An analysis of precise positioning and accuracy of the CE-3 lunar lander soft landing[J]. Geomatics and Information Science of Wuhan University,2016,41(2):274-278
[12] 张宇,孔静,陈明,等. CE5T拓展试验轨道精度分析[J]. 宇航学报,2019,40(9):1014-1023
ZHANG Y,KONG J,CHEN M,et al. Orbit accuracy analysis for CE5T extended mission[J]. Journal of Astronautics,2019,40(9):1014-1023
[13] CHUNG L R. Orbit determination methods for deep space drag-free controlled laser interferometry missions[D]. Washington:Department of Aerospace Engineering University of Maryland,2006.
[14] THORNTON C L,BORDER J S. Radiometric tracking techniques for deep-space navigation[M]. [S. l.]:John Wiley & Sons,2003.
[15] 董光亮,李海涛,郝万宏,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报(中英文),2018,5(2):99-114
DONG G L,LI H T,HAO W H,et al. Development and future of China’s deep space TT&C system[J]. Journal of Deep Space Exploration,2018,5(2):99-114
[16] BIN Y I,DEFENG G U,CHANG X,et al. Integrating BDS and GPS for precise relative orbit determination of LEO formation flying[J]. Chinese Journal of Aeronautics,2018,31(10):2013-2022
[17] CERDONIO M,DE MARCHI F,DE PIETRI R,et al. Modulation of LISA free-fall orbits due to the Earth-Moon system[J]. Classical and Quantum Gravity,2010,27(16):165007
[18] LUO J,CHEN L,DUAN H,et al. Tianqin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):035010
[19] RUAN W,CAI R,GUO Z,et al. Taiji program:gravitational-wave sources[EB/OL]. (2020-4-20)[2020-11-25]. https://arxiv.org/abs/1807.09495.
PDF(3207 KB)

Accesses

Citations

Detail

Sections
Recommended

/