Research on Adaptive Guidance Technology for Lunar Emergency Ascent

ZHAN Kangyi, CHEN Haipeng, YU Xuehao, WANG Lu, LI Zewen

PDF(983 KB)
PDF(983 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (2) : 163-170. DOI: 10.15982/j.issn.2096-9287.2021.20200076
Article
Article

Research on Adaptive Guidance Technology for Lunar Emergency Ascent

  • ZHAN Kangyi, CHEN Haipeng, YU Xuehao, WANG Lu, LI Zewen
Author information +
History +

Abstract

In this paper,an adaptive guidance method is studied for the emergency ascent of the lunar surface. Firstly,according to the principle of maximum value,the two-point boundary value problem of maximum energy entering orbit under five constraints is derived and established. Secondly,a two-layer iterative solution strategy is designed. The inner layer uses Newton iteration to solve the two-point boundary value problem of maximum energy into orbit,and the outer loop adjusts the time to make the speed meet the target speed. In the outer loop iteration,a time iterative adjustment strategy is designed. In the inner loop,according to the change rule of the thrust direction in the task,a strategy for selecting the initial value of the principal vector of the covariant variable is designed to solve the two-point boundary value problem. The simulation results show that the guidance law designed in this paper can converge reliably,and the target parameter binding is simple. It can adapt to coplanar ascending tasks and different-plane ascending tasks. In the presence of second consumption and specific impulse deviation,it still has high guidance accuracy.

Keywords

lunar ascent / adaptive guidance / Newton iteration / two-layer iterative solution

Cite this article

Download citation ▾
ZHAN Kangyi, CHEN Haipeng, YU Xuehao, WANG Lu, LI Zewen. Research on Adaptive Guidance Technology for Lunar Emergency Ascent. Journal of Deep Space Exploration, 2021, 8(2): 163‒170 https://doi.org/10.15982/j.issn.2096-9287.2021.20200076

References

[1] BENNETTT F V. Apollo experience report mission planning for lunar module descent and ascent:NASA Technical Note D-6846[R]. [S. l.]:NASA,1972.
[2] 薛志飞. 月球飞船动力下降制导技术研究[D]. 南京:南京航空航天大学,2018.
XUE Z F. Guidance for the powered descent of lunar spacecraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018.
[3] 李茂登. 月球软着陆自主导航、制导与控制问题研究[D]. 哈尔滨:哈尔滨工业大学,2007.
LI M D. Study the guidance, autonomous navigation and control of lunar soft landing[D]. Harbin:Harbin Institute of Technology,2007.
[4] 薛志飞,韩艳铧. 一种月球飞船动力下降预测制导方法的研究[J]. 航天控制,2017,5(6):23-30
XUE Z F, HAN Y H. A predictive guidance method for the powered descent of lunar spacecraft[J]. Aerospace Control,2017,5(6):23-30
[5] 黄翔宇,张宏华,王大轶,等. “嫦娥三号”探测器软着陆自主导航与制导技术[J]. 深空探测学报(中英文),2014,1(1):52-59
HUANG X Y, ZHANG H H, WANG D Y, et al. Autonomous navigation and guidance for Chang’e-3 soft landing[J]. Journal of Deep Space Exploration,2014,1(1):52-59
[6] 巩庆海,宋征宇,吕新广. 迭代制导在月面上升段的应用研究[J]. 载人航天,2015,21(3):33-38
GONG Q H, SONG Z Y, LV X G. Study on application of iterative guidance in lunar ascent[J]. Manned Spaceflight,2015,21(3):33-38
[7] 李鑫,刘莹莹,周军. 载人登月舱上升入轨段的制导律设计[J]. 系统工程与电子技术,2011,33(11):2480-2484
LI X,LIU Y Y,ZHOU J. Design of guidance law for lunar ascent phase of manned lunar module[J]. Systems Engineering and Electronics,2011,33(11):2480-2484
[8] 李桃取,董长虹,王峰波. 大角度异面动力上升制导策略研究[J]. 航天控制,2015,33(2):32-38
LI T Q, DONG C H, WANG F B. Research on guidance strategy of lunar non-coplanar powered ascent with large angle[J]. Aerospace Control,2015,33(2):32-38
[9] 马克茂,陈海朋. 登月舱上升段最优轨迹设计[J]. 中国空间科学技术,2013,33(2):54-60
MA K M, CHEN H P. Optimal trajectory design for the lunar module in ascent stage[J]. Chinese Space Science and Technology,2013,33(2):54-60
[10] 邱丰,宋征宇. 联立法求解月面上升段最优轨迹的快速收敛控制技术[J]. 载人航天,2015,21(1):6-18
QIU F,SONG Z Y. Fast convergence control on simultaneous approach based trajectory design during lunar ascent[J]. Manned Spaceflight,2015,21(1):6-18
[11] LU P,PAN B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance Control,and Dynamics,2010,33(2):404-414
[12] LU P,GRIFFIN B J,DUKEMAN G A,et al. Rapid optimal multi burn ascent planning and guidance[J]. Journal of Guidance,Control,and Dynamics,2008,31(6):1656-1664
[13] 崔乃刚,黄盘兴,韦常柱,等. 基于混合优化的运载器大气层内闭环制导方法[J]. 中国惯性技术学报,2015,23(3):328-333
CUI N G,HUANG P X, WEI C Z,et al. Closed-loop endo-atmospheric guidance of launch vehicle based on hybrid optimization approach[J]. Journal of Chinese Inertial Technology,2015,23(3):328-333
[14] HUANG P,WEI C,GU Y,et al. A symplectic optimisation method for rapid endo-atmospheric ascent trajectory planning[J]. International Journal of Modelling,Identification and Control,2015,24(3):196-205
[15] 黄盘兴. 运载器大气层内上升段轨迹快速优化方法研究[D]. 哈尔滨:哈尔滨工业大学,2015.
HUANG P X. Study on endo-atmospheric ascent trajectory rapid optimization for launch vehicles[D]. Harbin:Harbin Institute of Technology,2015.
[16] 李超兵,王晋麟,李海. 一种基于多终端约束的最优制导方法[J]. 中国空间科学技术,2016,36(5):9-17
LI C B, WANG J L,LI H. An optimal guidance method based on multiple terminal constraints[J]. Chinese Space Science and Technology,2016,36(5):9-17
[17] 傅瑜. 升力式天地往返飞行器自主制导方法研究[D]. 哈尔滨:哈尔滨工业大学,2012.
FU Y. Autonomous guidance method for lift transportation vehicle[D]. Harbin:Harbin Institute of Technology,2012.
[18] LU P,SUN H,TSAI B. Closed-loop endoatmospheric ascent guidance[J]. Journal of Guidance,Control,and Dynamics,2003,26(2):283-294
[19] 李庆杨,王能超,易大义. 数值分析(第5版)[M]. 北京:清华大学出版社,2008:228-229.
[20] 陈海朋,余薛浩,黄飞. 载人登月应急返回轨道倾角优化设计[J]. 中国空间科学技术,2017,37(4):69-74
CHEN H P,YU X H, HUANG F. Optimization design of inclination orbit of human lunar landing emergency return trajectory[J]. Chinese Space Science and Technology,2017,37(4):69-74
[21] 柳嘉润,巩庆海,翟雯婧. 智能自主系统及其航天控制应用[J]. 飞控与探测,2018,1(1):059-062
LIU J R, GONG Q H,ZHAI W J. Intelligent autonomous system and application in aerospace[J]. Flight Control & Detection,2018,1(1):059-062
[22] 刘付成. 人工智能在航天控制中的应用[J]. 飞控与探测,2018,1(1):016-025
LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection,2018,1(1):016-025
PDF(983 KB)

Accesses

Citations

Detail

Sections
Recommended

/