Research on Design and Process Program for Grid Fin of Reusable Rocket

WANG Chen, ZHANG Hongjian, YAN Wei, ZHANG Xi, SHI Yuhong, GUO Yue, YUAN Han

PDF(1137 KB)
PDF(1137 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (1) : 51-61. DOI: 10.15982/j.issn.2096-9287.2021.20200018
Topic:The technology of new generation medium-lift launch vehicle

Research on Design and Process Program for Grid Fin of Reusable Rocket

  • WANG Chen, ZHANG Hongjian, YAN Wei, ZHANG Xi, SHI Yuhong, GUO Yue, YUAN Han
Author information +
History +

Abstract

Grid fin aerodynamic control mechanism is one of the reusable rocket’s key parts. The design and manufacturing of grid fin is rather complex that coupling multi-specialty and multi-link. Aimed at the requirements of the reusable rocket, key design parameters of grid fins and their influences are presented combined with the grid fin’s geometric features from the aspects of working principle, geometric features, section shape, forward and backward sweep, etc.. Considering the thin-wall complex features of lattice and the requirements of high temperature resistance, several kinds of technological schemes and process program of titanium alloy forming and composite molding which can be used in the manufacturing of grid rudder are studied. From the aspects of design difficulty, process difficulty, product qualification rate, product accuracy and cost constrains, a comparative analysis of the process programs are made. Finally, the principles of grid fin design are proposed, providing a reference for the design of the Long March-8R(CZ-8R) rocket and other reused rockets.

Keywords

reusable rocket / grid fin / aerodynamic design / process program

Cite this article

Download citation ▾
WANG Chen, ZHANG Hongjian, YAN Wei, ZHANG Xi, SHI Yuhong, GUO Yue, YUAN Han. Research on Design and Process Program for Grid Fin of Reusable Rocket. Journal of Deep Space Exploration, 2021, 8(1): 51‒61 https://doi.org/10.15982/j.issn.2096-9287.2021.20200018

References

[1] 杨勇,王小军,唐一华,等. 重复使用运载器发展趋势及特点[J]. 导弹与航天运载技术,2002(5):15-19
YANG Y,WANG X J,TANG Y H,et al. Development trends and characteristics of reusable launch vehicles[J]. Missiles and Space Vehicles,2002(5):15-19
[2] 冯韶伟,马忠辉,吴义田,等. 国外运载火箭重复使用关键技术综述[J]. 导弹与航天运载技术,2014(5):82-86
FENG S W,MA Z H,WU Y T,et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles,2014(5):82-86
[3] 高朝辉,张普卓,刘宇,等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报,2016,37(2):145-152
GAO Z H,ZHANG P Z,LIU Y,et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics,2016,37(2):145-152
[4] 康建斌,谢泽兵,郑宏涛,等. 火箭子级垂直返回海上平台制导、导航和控制技术研究[J]. 导弹与航天运载技术,2016(6):32-36
KANG J B,XIE Z B,ZHENG H T,et al. Study on guidance,navigation and control of vertical landing droneship for rocket first stage[J]. Missiles and Space Vehicles,2016(6):32-36
[5] 黎汉华,石玉红. 栅格翼国内外研究现状及发展趋势[J]. 导弹与航天运载技术,2008(6):27-30
LI H H,SHI Y H. Current status and development trend of grid fin[J]. Missiles and Space Vehicles,2008(6):27-30
[6] DESPEYROUX A,HICKEY J P,DESAULNIER R,et al. Numerical analysis of static and dynamic performances of grid fin controlled missiles[J]. Journal of Spacecraft and Rockets,2015(4):1-8
[7] 石玉红,肖耘,徐卫秀. CZ-2F逃逸飞行器最大速度头模拟飞行试验技术[J]. 宇航学报,2004,25(5):484-487
SHI Y H,XIAO Y,XU W X. The technology of CZ-2F escape vehicle maximum velocity head simulated flight test[J]. Journal of Astronautics,2004,25(5):484-487
[8] 宋征宇,王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术,2019,3(6):1-12
SONG Z Y,WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology,2019,3(6):1-12
[9] MONTGOMERY C,HUGHSON,ERIC L B. Transonic aerodynamic analysis of lattice grid tail fin missiles[C]//The 24th Applied Aerodynamic Conferernce. San Francisco California:[s. n. ],2006.
[10] RAVINDRA K,NIKHIL V,SHENDE N R. CFD simulation of the grid fin flows:AIAA 2002-2722[R]. [S. l. ]:AIAA,2002.
[11] DESPIRITO J,EDGE H L,WEINACHT P,et al. CFD analysis of grid fins for maneuvering missiles:AIAA-2000-0391[R]. [S. l. ]:AIAA,2000.
[12] 张亮,王淑华,姜贵庆. 钝化前缘对栅格舵激波干扰与热流分布的影响[J]. 宇航学报,2010,31(2):324-328
ZHANG L,WANG S H,JIANG G Q. Influence of blunt leading edge on shock-shock interaction and heat flux distribution of grid fin[J]. Journal of Astronautics,2010,31(2):324-328
[13] 刘彬,王辰,张宏剑,等. 栅格舵电弧风洞试验的气动参数模拟方法研究[J]. 宇航计测技术,2017,37(4):12-15
LIU B,WANG C,ZHANG H J,et al. Study of test method for grid fin thermal protection based on arc-heated wind tunnel[J]. Journal of Astronautic Metrology and Measurement,2017,37(4):12-15
[14] YAN Z. Drag reduction for sweptback grid fin with blunt and sharp leading edges[J]. Journal of Aircraft,2012,49(5):1526-1531
[15] MARCO D. Measurements of the forces and moments generated by swept-back grid fins[C]//30th AIAA Applied Aerodynamics Conference. New Orleans,Louisiana:AIAA,2012.
[16] DANIEL A. P,MICHAEL R M,WILLIAM C R,et al. Grid fin stabilization of the orion launch abort vehicle[C]//29th AIAA Applied Aerodynamics Conference. Honolulu,Hawaii:[s. n. ],2011.
[17] 邓帆,陈少松. 栅格舵外形特征对减阻影响的研究[J]. 实验流体力学,2011,25(3):10-15
DENG F,CHEN S S. Investigations of grid fins geometric feature influence on drag reduction[J]. Journal of Experiments in Fluid Mechanics,2011,25(3):10-15
[18] WANG D,YU Y. Numerical study on drag reduction for sweptback,sweptfront,delta grid fin with blunt and sharp leading edges[C]//AIAA Modeling and Simulation Technologies Conference. National Harbor,Maryland:AIAA,2014.
[19] DANIEL G,ERICH S. Novel locally swept lattice wings for missile control at high speeds[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno,Nevada:AIAA,2007.
[20] WILLIAM D W,MARK S M. Curvature and leading edge sweep back effects on grid fin aerodynamic characteristics:AIAA-93-3480-CP[R]. [S. l. ]:AIAA,1993.
[21] 谭献忠,邓帆,陈少松. 翼面气动外形对栅格舵减阻的影响[J]. 实验力学,2013,28(2):255-260
TAN X Z,DENG F,CHEN S S. On the influence of wing aerodynamic surface on the grid fin drag reduction[J]. Journal of Experimental Mechanics,2013,28(2):255-260
[22] ADAM T C,PAUL R C,SEAN D,et al. Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications[J]. International Journal of Mechanics and Materials in Design,2008,4(2):181-187
[23] HERZOG D,SEYDA V,WYCISK E,et al. Additive manufacturing of metals[J]. Acta Materialia,2016,117:371-392
[24] LIU Q,WANG Y D,ZHENG H,et al. TC17 titanium alloy laser melting deposition repair process and properties[J]. Optics & Laser Technology,2016,82:1-9
[25] 张智. CZ-2F火箭逃逸系统[J]. 导弹与航天运载技术,2004(1):20-27
ZHANG Z. Launch escape system of LM-2F launch vehicle[J]. Missiles and Space Vehicles,2004(1):20-27
[26] AUWAL1 S T,RAMESH S,YUSOF F,et al. A review on laser beam welding of titanium alloys[J]. The International Journal of Advanced Manufacturing Technology,2018,97:1071-1098
[27] HUYBRECHTS S,MEINK T E. Advanced grid stiffened structures for the next gengeration of launch vehicles[C]//IEEE Aerospace Conference. [S. l. ]:IEEE,1997.
[28] WANG Q,TANG X Z,ZHOU D,et al. A dual-layer radar absorbing material with fully embedded square-holes frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letter,2017,16:3200-3203
[29] BURAGOHAIN M,VELMURUGAN R. Study of filament wound grid-stiffened composite cylindrical structures[J]. Composite Structures,2011,93(2):1031-1038
[30] CHEN L M,FAN H L,SUN F F,et al. Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder[J]. Thin Walled Structures,2013,68:75-84
[31] HUYBRECHTS S M,MEINK T E,WEGNER P M,et al. Manufacturing theory for advanced grid stiffened structures[J]. Composites Part A:Applied Science and Manufacturing,2002,33(2):155-161
[32] TOTARO G,NICOLA F D. Recent advance on design and manufacturing of composite anisogrid structures for space launchers[J]. Acta Astronautica,2012,81:570-577
[33] HAN D,TSAI S W. Interlocked composite grids design and manufacturing[J]. Journal of Composite Materials,2003,37(4):287-316
[34] HAN D. Design and manufacturing of interlocked composite grids[D]. USA:Stanford University,2001.
[35] TSAI S W. Composite grid/frame structures:USA,5888608[P]. 1999.
[36] THOMAS H M. Design of a carbon fiber composite grid structure for the GLAST spacecraft using a novel manufacturing technique[D]. USA:Stanford University,2001.
[37] 吴林志,熊健,马力,等. 新型复合材料点阵结构的研究进展[J]. 力学进展,2012,42(1):41-67
WU L Z,XIONG J,MA L,et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics,2012,42(1):41-67
PDF(1137 KB)

Accesses

Citations

Detail

Sections
Recommended

/