A Self-locking Electro-mechanical Actuation System for Liquid-Propellant Rocket Engine

JIANG Yang, LAN Tian, ZHENG Qijia, WANG Zhihui, ZHAO Yingxin

PDF(1068 KB)
PDF(1068 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (1) : 27-33. DOI: 10.15982/j.issn.2096-9287.2021.20200006
Topic:The technology of new generation medium-lift launch vehicle

A Self-locking Electro-mechanical Actuation System for Liquid-Propellant Rocket Engine

  • JIANG Yang, LAN Tian, ZHENG Qijia, WANG Zhihui, ZHAO Yingxin
Author information +
History +

Abstract

A self-locking electromechanical actuation system to gimbal a high thrust liquid rocket engine is put forward to meet the demands of the batch production and the triplex horizontal preparation for an agile launching of China’s new generation launch vehicles. A self-locking module is designed, a tandem compact electro-mechanical actuator and a control algorithm to suppress structural resonance are adopted. Ground experiments are carried out. It is shown that,the requirements of a long term horizontal transportation, a horizontal testing to tolerate the engine gravity effect, the control of the low frequency resonance of a liquid engine, and easiness for batch production, shall all be satisfied, laying a good foundation to facilitate the development of the next generation medium-sized launch vehicle in China.

Keywords

LM-8 / electro-mechanical actuator / self-locking / resonance suppression

Cite this article

Download citation ▾
JIANG Yang, LAN Tian, ZHENG Qijia, WANG Zhihui, ZHAO Yingxin. A Self-locking Electro-mechanical Actuation System for Liquid-Propellant Rocket Engine. Journal of Deep Space Exploration, 2021, 8(1): 27‒33 https://doi.org/10.15982/j.issn.2096-9287.2021.20200006

References

[1] 曾广商,赵守军,张晓莎. 我国载人运载火箭伺服机构技术发展分析[J]. 载人航天,2013,19(4):3-10
ZENG G S,ZHAO S J,ZHANG X S. Technology development analysis of chinese servo-mechanisms for human-rated launch vehicles[J]. Manned Spaceflight,2013,19(4):3-10
[2] 赵守军,赵迎鑫,姜庆义,等. 液氧煤油载人运载火箭二级伺服机构系统方案[J]. 载人航天,2012,18(5):1-7
ZHAO S J,ZHAO Y X,JIANG Q Y,et al. The 2nd stage servo-mechanism system for liquid oxygen-kerosene manned launch vehicle[J]. Manned Spaceflight,2012,18(5):1-7
[3] 陈国华. 长征运载火箭介绍:长征三号系列(七)[J]. 中国航天,1998(9):31-34
[4] 秦旭东, 龙乐豪, 容易. 我国航天运输系统成就与展望[J]. 深空探测学报(中英文), 2016, 3(4): 315-322.
QIN X D, LONG L H, RONG Y. The achievement and future of China space transportation system[J]. Journal of Deep Space Exploration, 2016, 3(4): 315-322.
[5] 张新华,黄建,张兆凯,等. 大功率高性能航天伺服系统发展综述[J]. 导航定位与授时,2017,4(1):14-19
ZHANG X H,HUANG J,ZHANG Z K,et al. Review on the development of high-power high-performance aerospace servo system[J]. Navigation Positioning and Timing,2017,4(1):14-19
[6] 黄敏,胡晓伟,李世佳. 伺服控制系统研究[J]. 民用飞机设计研究,2019(4):31-35
[7] DéE G,VANTHUYNE T,POTINI A,et al. Electromechanical thrust vector control systems for the Vega-C launcher[C]//8th European Conference for Aeronautics and Apace Sciences. Madrid Spain : ESA,2019.
[8] VANTHUYNE T. An electrical thrust vector control system for the vega launcher[C]//13th European Space Mechanisms and Tribology Symposium—ESMATS,2009. Vienna,Austria:ESA,2009.
[9] 冯伟,钱昌年,胡翔宇,等. 一种提高火箭电动伺服系统动态性能的方法[J]. 上海航天,2016,33(Z1):112-116
FENG W,QIAN C N,HU X Y,et al. A method of improving dynamic characteristics of electro-mechanical servo system on launch vehicle[J]. Aerospace Shanghai,2016,33(Z1):112-116
[10] NASA. Atlas launch system mission planners guide A23: N04/1992[R]. [S. l.]: NASA, 1992.
[11] 刘更,张文杰,马尚君,等. 行星滚柱丝杠副承载特性研究进展[J]. 机械科学与技术,2017,36(4):598-604
LIU G,ZHANG W J,MA S J,et al. Review on load bearing characteristics of planetary roller screw mechanism[J]. Mechanical Science and Technology for Aerospace Engineering,2017,36(4):598-604
[12] 郑正鼎,陈兵奎,杜兴,等. 差动式行星滚柱丝杠承载特性分析[J]. 重庆大学学报,2020,43(12):23-32
ZHENG Z D, CHEN B K, DU X, et al. Analysis of bearing characteristics of differential planetary roller screw[J]. Journal of Chongqing University,2020,43(12):23-32
[13] 陈曼龙. 差动丝杠机构的传动性能[J]. 机械传动,2008,32(1):98-100,112
CHEN M L. Drive performance of differential roller screw[J]. Journal of Mechanical Transmission,2008,32(1):98-100,112
[14] 胡小飞,王毅,朱炎,等. 电磁制动器的发展现状及应用前景[J]. 微特电机,2019,47(4):71-75
HU X F,WANG Y,ZHU Y,et al. Development and application prospects of the electromagnetic brake[J]. Small & Special Electrical Machines,2019,47(4):71-75
[15] 汪达鹏,贾宇琪,周利华. 航空永磁制动器关键技术研究[C]//2019年(第四届)中国航空科学技术大会论文集. 北京:中国航空学会,2019.
[16] 尹传威,赵守军,陈克勤. 双谐振点发动机推力矢量控制伺服机构算法优化研究[J]. 导弹与航天运载技术,2013(1):21-26
YIN C W,ZHAO S J,CHEN K Q. Control algorithm optimization for thrust vector control servo-mechanisms of double-resonance-frequency engine[J]. Missiles and Space Vehicles,2013(1):21-26
[17] 李怀兵,刘鹏,王阿萍,等. 一种集成式高精度流量调节机构的设计[J]. 导弹与航天运载技术,2017(5):67-70
LI H B,LIU P,WANG A P,et al. Design of integrated and high precision flow regulation mechanism[J]. Missiles and Space Vehicles,2017(5):67-70
[18] 邓文翔,马吴宁,姚建勇. 机电伺服系统鲁棒自适应重复控制[J]. 上海交通大学学报,2016,50(9):1486-1492
DENG W X,MA W N,YAO J Y. Robust adaptive repetitive control of mechatronic servo system[J]. Journal of Shanghai Jiaotong University,2016,50(9):1486-1492
[19] 吴跃飞,马大为,姚建勇,等. 基于修正模型的LuGre自适应鲁棒控制在机电伺服系统中的应用[J]. 机械工程学报,2014,50(22):207-212
WU Y F,MA D W,YAO J Y,et al. Application of adaptive robust control in mechatronic servo system based on modified LuGre model[J]. Journal of Mechanical Engineering,2014,50(22):207-212
[20] DéE G,VANTHUYNE T,ALEXANDRE P. An electrical thrust vector control system with dynamic force feedback[C]//Recent Advances in Aerospace Actuation Systems and Components Proceedings. Toulouse, France: INSA, 2007.
PDF(1068 KB)

Accesses

Citations

Detail

Sections
Recommended

/