Schematic Design of New Generation of Lunar Corner Cube Retroreflector with Single Aperture

HE Yun1, HU Zezhu1, LI Ming2, LIU Qi1, YEH Hsienchi1

PDF(2570 KB)
PDF(2570 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (4) : 416-422. DOI: 10.15982/j.issn.2096-9287.2021.20190227003
Article

Schematic Design of New Generation of Lunar Corner Cube Retroreflector with Single Aperture

  • HE Yun1, HU Zezhu1, LI Ming2, LIU Qi1, YEH Hsienchi1
Author information +
History +

Abstract

A corner cube retroreflector (CCR) with single large aperture for the new generation of Lunar Laser Ranging (LLR) is designed. On the basis of analyzing the current research progress and development trend at home and abroad, the overall design scheme of the single large aperture CCR is introduced, including the design of retroreflector, the scheme of placement on lunar surface, and the environmental testing scheme. It is verified that the 170 mm hollow CCR can realize 68.5% reflecting intensity of ideal Apollo 11 CCR array at 532 nm. This study is anticipated to promote the precision of LLR for a single photon received to millimeter level.

Keywords

lunar laser ranging / laser retroreflector / hydroxide-catalysis bonding / environmental test

Cite this article

Download citation ▾
HE Yun, HU Zezhu, LI Ming, LIU Qi, YEH Hsienchi. Schematic Design of New Generation of Lunar Corner Cube Retroreflector with Single Aperture. Journal of Deep Space Exploration, 2021, 8(4): 416‒422 https://doi.org/10.15982/j.issn.2096-9287.2021.20190227003

References

[1] MURPHY T,ADELBERGER E,STRASBURG J,et al. Testing gravity via next-generation Lunar laser-ranging[J]. Nuclear Physics B(Proceedings Supplements),2004,134:155-162
[2] MüLLER J,HOFMANN F,BISKUPEK L. Testing various facets of the equivalence principle using lunar laser ranging[J]. Classical and Quantum Gravity,2012,29:184006
[3] WILLIAMS J,TURYSHEV S,BOGGS D. Lunar laser ranging tests of the equivalence principle with the Earth and Moon[J]. International Journal of Modern Physics D,2009,18:1129-1175
[4] WILLIAMS J,TURYSHEV S,BOGGS D. Lunar laser ranging tests of the equivalence principle[J]. Classical and Quantum Gravity,2012,29:184004
[5] JüRGEN M,JAMES G W,SLAVA G, et al. Potential capabilities of lunar laser ranging for geodesy and relativity dynamic planet[M]. [S.l.]:International Association of Geodesy Symposia,2006.
[6] ADELBERGER E,HECKEL B,NELSON A. Tests of the gravitational inverse-square law[J]. Annual Review of Nuclear and Particle Science,2003,53:77-121
[7] MüLLER J,HOFMANN F,BISKUPEK L. Variations of the gravational constant from lunar laser ranging data[J]. Classical and Quantum Gravity,2007,24:4533-4538
[8] HOFFMANN F,MüLLER J,BISKUPEK L. Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant[J]. Astronomy and Astrophysics,2010,L5:522
[9] WILLIAMS J,TURYSHEV S,BOGGS D. Progress in lunar laser ranging tests of relativistic gravity[J]. Physical Review Letters,2004,93:261101
[10] WILLIAMS J,BOGGS D,YODER C,et al. Lunar rotational dissipation in solid body and molten core[J]. Journal of Geophysics Research:Planets,2001,106:27933-68
[11] KHAN A,MOSEGAARD K,WILLIAMS J,et al. Does the Moon possess a molten core?Probing the deep lunar interior using results from LLR and Lunar Prospector[J]. Journal of Geophysics Research:Planets,2004,109:E09007
[12] ALLEY C,BENDER P,CURRIE D,et al. Laser ranging retroreflector:19710021489[R]. USA:NASA Special Publication,1971.
[13] MURPHY T. Lunar laser ranging:the millimeter challenge[J]. Reports on Progress in Physics,2013,76:076901
[14] LI S,TANG B,ZHOU H. Calculation on diffraction aperture of cube corner retroreflector[J]. Chinese Optics Letters,2008,6(11):833-836
[15] ZHANG Z,ZHANG H,CHEN W,et al. Design and performances of laser retro-reflector arrays for Beidou navigation satellites and SLR observations[J]. Advances in Space Research,2014,54:811-817
[16] DICKEY J,BENDER P,FALLER J,et al. Lunar laser ranging:a continuing legacy of the Apollo program[J]. Science,1994,265:482-490
[17] 何芸,刘祺,田伟,等. 地月第二拉格朗日点卫星激光测距技术研究[J]. 深空探测学报(中英文),2017,4(2):130-137
HE Y,LIU Q,TIAN W,et al. Study on laser ranging for satellite on the second lagrange point of Earth-Moon system[J]. Journal of Deep Space Exploration,2017,4(2):130-137
[18] MURPHY T,ADELBERGER E,BATTAT J,et al. Long-term degradation of optical devices on the Moon[J]. Icarus,2010,208:31-35
[19] TURYSHEV S,WILLIAMS J,FOLKNER W,et al. Corner-cube retro-reflector instrument for advanced lunar laser ranging[J]. Experimental Astronomy,2013,36:105-135
[20] MURPHY T,ADELBERGER E,BATTAT J,et al. The apache point observatory lunar laser-ranging operation:instrument description and first detections[J]. Publications of the Astronomical Society of the Pacific,2008,120:20-37
[21] CURRIE D,DELL’AGNELLO S,MONACHE G,et al. A lunar laser ranging retroreflector array for the 21st century[J]. Acta Astronautica,2011,68:667-680
[22] HE Y,LIU Q,DUAN H,et al. A 170 mm hollow corner cube retro-reflector on Chang’e 4 lunar relay satellite [C]//Proceedings of the 20th International Workshop on Laser Ranging. Potsdam, Germany:[s.n.],2016.
[23] OTSUBO T,KUNIMORI H,NODA H,et al. Simulation of optical response of retroreflectors for future lunar laser ranging[J]. Advances in Space Research,2010,45:733-740
[24] MARTINI M,DELL’AGNELLO S,CURRIE D,et al. MoonLIGHT:a USA-Italy lunar laser ranging retroreflector array for the 21st century[J]. Planetary and Space Science,2012,74:276-282
[25] PRESTON A,MERKOWITZ S. Next-generation hollow retroreflectors for lunar laser ranging[J]. Applied Optics,2013,52(36):8676-8684
[26] PRESTON A,MERKOWITZ S. Comparison of fabrication techniques for hollow retroreflectors[J]. Optical Engineering,2014,53(6):065107
[27] NEUBERT R,LUDWIG G,HAMDORF A,et al. Testing a 20 cm diameter open reflector[C]//Proceedings of International Technical Laser Workshop. Frascati,Italy:[s.n.],2012.
[28] HE Y,LIU Q,DUAN H,et al. Manufacture of a hollow corner-cube retroreflector for next generation of lunar laser ranging[J]. Research in Astronomy and Astrophysics,2018,18(11):136
[29] HE Y,LIU Q,HE J,et al. Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging[J]. Chinese Physics B,2018,10(27):100701
[30] ROBERTSON D,FITZSIMONS E,KILLOW C,et al. Construction and testing of the optical bench for LISA Pathfinder[J]. Classical Quantum Gravity,2013,30:085006
[31] ELLIFFE E,BOGENSTAHL J,DESHPANDE A,et al. Hydroxide-catalysis bonding for stable optical systems for space[J]. Classical Quantum Gravity,2005,22:257-267
[32] GWO D,WANG S,BOWER K,et al. The gravity probe-b star-tracking telescope[J]. Advances in Space Research,2003,32(7):1401-1405
[33] NAGIHARA S,TAYLOR P,WILLIAMS D,et al. Long-Term warming of surface and subsurface temperatures observed at Apollo15 and 17 sites:implications for future lunar geophysical missions ground-based geophysics on the Moon[C]//LPI Contribution No. 1530,p. 3008Ground-Based Geophysics on the Moon. Arizona, USA:[s.n.],2010.
[34] ZACNY K,CURRIE D,PAULSEN G,et al. Development and testing of the pneumatic lunar drill for the emplacement of the corner cube reflector on the Moon[J]. Planetary and Space Science,2012,71:131-141
[35] 吴伟仁,于登云. “嫦娥3号”月球软着陆工程中的关键技术[J]. 深空探测学报(中英文),2014,1(2):105-109
WU W R,YU D Y. Key technologies in the Chang’e-3 soft-landing project[J]. Journal of Deep Space Exploration,2014,1(2):105-109
[36] 吴伟仁,周建亮,王保丰,等. 嫦娥三号“玉兔号”巡视器遥操作中的关键技术[J]. 中国科学:信息科学,2014,44(4):425-440
WU W R,ZHOU J L,WANG B F,et al. Key technologies in the teleoperation of Chang’E-3 “Jade Rabbit” rover[J]. Science China:Information Sciences,2014,44(4):425-440
[37] 周辉,李松,郑国兴,等. 卫星角反射器有效衍射区域的研究[J]. 光子学报,2009,38(8):1920-1925
ZHOU H,LI S,ZHENG G,et al. Effective diffraction region for satellite retroreflector[J]. Acta Photonica Sinica,2009,38(8):1920-1925
PDF(2570 KB)

Accesses

Citations

Detail

Sections
Recommended

/