Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration

CAO Zhiyuan, LI Xiangyu, QIAO Dong

PDF(1069 KB)
PDF(1069 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (6) : 536-544. DOI: 10.15982/j.issn.2096-9287.2020.20200068
Topic:Exploring the Solar System Boundary

Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration

  • CAO Zhiyuan, LI Xiangyu, QIAO Dong
Author information +
History +

Abstract

Solar system boundary exploration will enhance our understanding of the formation and evolution of the Solar system,which is an important issue of future deep space exploration. As the boundary is far from Earth,the energy needed in the exploration is huge. Thus,gravity-assist technique is essential to carry out Solar system boundary exploration mission. This paper aims at multiple gravity-assist transfer design in Solar system boundary exploration missions. First,processing method of goals and constraints in Solar system boundary exploration are studied. And a progressive nested-loop optimization method combining two different kinds of multiple gravity-assist dynamics is provide,as well as the detailed steps. At last,taking the nose and the tail of Solar system boundary for example,the optimal fly-by sequences are provided,proofing the validity of the method. The simulations demonstrates that the optimal multiple gravity –assists trajectories is Earth-Venus-Earth-Earth-Jupiter-Saturn- nose of Solar system,and the optimal multiple gravity –assists trajectories is Earth-Venus-Earth-Earth-Neptune-tail of Solar system. The research will provide the reference for the target selection and mission planning for future Solar system exploration in China.

Keywords

Solar system boundary exploration / multiple gravity-assist / trajectory optimization / fly-by sequence

Cite this article

Download citation ▾
CAO Zhiyuan, LI Xiangyu, QIAO Dong. Target Selection of Multiple Gravity-Assist Trajectories for Solar Boundary Exploration. Journal of Deep Space Exploration, 2020, 7(6): 536‒544 https://doi.org/10.15982/j.issn.2096-9287.2020.20200068

References

[1] 陈莉丹,谢剑锋,刘勇, 等. 中国深空探测任务轨道控制技术综述[J]. 深空探测学报(中英文),2019, 6(3): 210-218.
CHEN L D, XIE J F, LIU Y, et al. Review of the orbit maneuver technology for Chinese deep space exploration missions[J]. Journal of Deep Space Exploration, 2019, 6(3): 210-218.
[2] 郑永春,欧阳自远.太阳系探测的发展趋势与科学问题分析[J]. 深空探测学报(中英文),2014,1(2):83-92.
ZHENG Y C,OUYANG Z Y.Development trend analysis of solar system explorationand the scientific vision for future missions[J]. Journal of Deep Space Exploration, 2014,1(2):83-92.
[3] MACEK W M,WAWRZASZEK A,BURLAGA L F. Multifractal structures detected by Voyager 1 at the heliospheric boundaries[J]. The Astrophysical Journal Letters,2014,793(2):L30
[4] STRAUSS R D T. Voyager 2 enters interstellar space[J]. Nature Astronomy,2019,3(11):963-964
[5] LISSE C M,MCNUTT JR R L,BRANDT P C,et al. Interstellar Probe (ISP) observations of the solar system's debris disks[J]. AGUFM,2018,2018:SH32C-09
[6] VASILE M,DE PASCALE P. Preliminary design of multiple gravity-assist trajectories[J]. Journal of Spacecraft and Rockets,2006,43(4):794-805
[7] VINK?T,IZZO D. Global Optimization heuristics and test problems for preliminary spacecraft trajectory design:ACT-TNT-MAD-GOHTPPSTD[R]. [S. l.]:European Space Agency,the Advanced Concepts Team:2008.
[8] VASILE M,MINISCI E,LOCATELLI M. Analysis of some global optimization algorithms for space trajectory design[J]. Journal of Spacecraft and Rockets,2010,47(2):334-344
[9] CERIOTT M,VASILE M. Automated multi-gravityassist trajectory planning with a modified ant colony algorithm[J]. Journal of Aerospace Computing,Information and Communication,2010,7(9):261-293
[10] LONGUSKI J,WILLIAMS S. Automated design of gravity-assist trajectories to mars and the outer planets[J]. Celestial Mechanics and Dynamical Astronomy,1991,52(3):207-220
[11] 陈诗雨,杨洪伟,宝音贺西. 木星系探测及行星穿越任务轨迹初步设计[J]. 深空探测学报(中英文),2019,6(2):189-194.
CHEN S Y, YANG H W,BAOYIN H X. Preliminary design for the trajectories of jovian and planetary mission[J]. Journal of Deep Space Exploration, 2019,6(2):189-194.
[12] OLDS A D,KLUEVER C A,CUPPLES M L. Interplanetary mission design using differential evolution[J]. Journal of Spacecraft and Rockets,2007,44(5):1060-1070
[13] GAD A,ABDELKHALIK O. Hidden genes genetic algorithm for multi-gravity-assist trajectories optimization[J]. Journal of Spacecraft and Rockets,2011,48(4):629-641
[14] ABDELKHALIK O,GAD A. Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectories optimization[J]. Journal of Guidance,Control,and Dynamics,2012,35(2):520-529
[15] ENGLANDER J A,CONWAY B A,WILLIAMS T. Automated mission planning via evolutionary algorithms[J]. Journal of Guidance,Control,and Dynamics,2012,35(6):1878-1887
[16] MEWALDT R A, KANGAS J, KERRIDGE S J,et al. A small interstellar probe to the heliospheric boundary and interstellar space[J]. Acta Astronautica,1995,35: 267-276.
PDF(1069 KB)

Accesses

Citations

Detail

Sections
Recommended

/