Design and Implementation of Integrated Control System for Mars Rover Mechanism

ZHOU Dong1, XU Xiaowei2, JIA Yang1, GUO Jian1, LI Ke1, ZHU Ma1, ZHANG Hongjun1

PDF(1167 KB)
PDF(1167 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (5) : 450-457. DOI: 10.15982/j.issn.2096-9287.2020.20200033
Topic:Mars Patrol Exploration Technology
Topic:Mars Patrol Exploration Technology

Design and Implementation of Integrated Control System for Mars Rover Mechanism

  • ZHOU Dong1, XU Xiaowei2, JIA Yang1, GUO Jian1, LI Ke1, ZHU Ma1, ZHANG Hongjun1
Author information +
History +

Abstract

Spacecraft servo mechanisms are generally driven separately,and are controlled and monitored by ground tele-operation. The servo mechanisms of Mars rover have many functions such as movement,suspension adjustment,communication antenna pointing,solar wing orientation,mast rotation,etc. The Mars rover is equipped with numerous motors and sensors. The traditional design cannot meet the requirements of integration,autonomy and fault-tolerant control for the Mars rover. In this paper,the overall structure of the integrated control system for the Mars rover mechanism is optimized. The strategy of hardware resource reuse and computing resource reuse is adopted to achieve the goal of integration. Autonomous management functions are realized for motion planning,control operation,etc. The design requirements of fault-tolerant control are met through the functions of fault detection,emergency treatment and degraded control. For the application of the Mars rover mechanism control system,all specifications are optimized in compliance with many constraints. The validity and rationality of the method is verified,providing reference for the mechanism control systems of space explorer with complex functions and strict constraints.

Keywords

Mars rover / mechanism control / integration design / autonomy / fault-tolerant control

Cite this article

Download citation ▾
ZHOU Dong, XU Xiaowei, JIA Yang, GUO Jian, LI Ke, ZHU Ma, ZHANG Hongjun. Design and Implementation of Integrated Control System for Mars Rover Mechanism. Journal of Deep Space Exploration, 2020, 7(5): 450‒457 https://doi.org/10.15982/j.issn.2096-9287.2020.20200033

References

[1] 王大轶,符方舟,孟林智,等. 深空探测器自主控制技术综述[J]. 深空探测学报(中英文),2019,6(4):317-327
WANG D Y,FU F Z,MENG L Z,et al. Research of autonomous control technology for deep space probes[J]. Journal of Deep Space Exploration,2019,6(4):317-327
[2] 王琼,贾阳,陶灼,等. 火星移动智能体技术探讨[J]. 航天器工程,2015,24(4):27-32
WANG Q,JIA Y,TAO Z,et al. Discuss on Mars mobile agent technologies[J]. Spacecraft Engineering,2015,24(4):27-32
[3] 李丽娇,石然,严丹,等. 一种适用于星载太阳翼的驱动控制器设计[J]. 空间控制技术与应用,2018,44(6):22-31
LI L J,SHI R,YAN D,et al. Design of a drive controller for satellite-borne solar wing[J]. Aerospace Control and Applicant,2018,44(6):22-31
[4] 宋斌,齐永龙. 一种卫星通信天线伺服机构设计[J]. 国外电子测量技术,2014,33(2):49-52
SONG B,QI Y L. Design of satellite communication servo mechanism[J]. Foreign Electronic Measurement Technology,2014,33(2):49-52
[5] 刘宏,蒋再男,刘业超. 空间机械臂技术发展综述[J]. 载人航天,2015,21(5):435-443
LIU H,JIANG Z N,LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight,2015,21(5):435-443
[6] 张旺军,申振荣,李群智,等. 月球巡视器的系统设计优化方法研究[J]. 航天器工程,2014,23(3):4-11
ZHANG W J,SHEN Z R,LI Q Z,et al. Study on system design and optimization method of lunar rover[J]. Spacecraft Engineering,2014,23(3):4-11
[7] 贾阳,张建利,李群智,等. 嫦娥三号巡视器遥操作系统设计与实现[J]. 中国科学技术科学,2014,44(5):470-482
JIA Y,ZHANG J L,LI Q Z,et al. Design and realization for teleoperation system of the Chang’e-3 rover[J]. Science China Technological Sciences,2014,44(5):470-482
[8] 申振荣,张伍,贾阳,等. 嫦娥三号巡视器及其技术特点分析[J]. 航天器工程,2015,24(5):8-13
SHEN Z R,ZHANG W,JIA Y,et al. System design and technical characteristics analysis of Chang’e-3 lunar rover[J]. Spacecraft Engineering,2015,24(5):8-13
[9] 邹大力,杨雷,曲广吉. 主动悬架星球车移动系统姿态控制研究[J]. 空间控制技术与应用,2008,34(3):12-16
ZOU D L,YANG L,QU G J. Research on the attitude control of active suspension rover[J]. Aerospace Control and Application,2008,34(3):12-16
[10] 陶灼,陈百超. 火星车在松软地面上的蠕动步态研究[J]. 航天器环境工程,2016,33(3):262-268
TAO Z,CHEN B C. The inching locomotion of a martian rover on loose soil[J]. Spacecraft Environment Engineering,2016,33(3):262-268
[11] 彭松,陈百超,张建利. 月面巡视器定向天线对地指向规划方法研究[J]. 航天器工程,2013,22(3):41-46
PENG S,CHEN B C,ZHANG J L. Research on the method of lunar rover antenna direction planning[J]. Spacecraft Engineering,2013,22(3):41-46
[12] 赵葵银,寻大勇,唐勇奇. 基于AD2S80A的永磁同步电动机高精度位置检测系统[J]. 低压电器,2006,9:25-27
ZHAO K Y,XUN D Y,TANG Y Q. High accuracy position measuring system based on AD2S80A for permanent magnet synchronous motor[J]. Low Voltage Application,2006,9:25-27
[13] 郑力,卢刚,李声晋. 基于AD2S80A的双路RDC测角系统及接口设计[J]. 微特电机,2009(8):12-18
ZHENG L,LU G,LI S J. Design of double channel angle measuring system based on AD2S80A and its interface circuit[J]. Small & Special Electrical Machines,2009(8):12-18
[14] 徐建萍,施未勋. 一种基于MSK4300的无刷直流电机伺服控制系统设计[J]. 自动化应用,2013(4):50-55
XU J P,SHI W X. A brushless DC motor servo control system based on MSK4300[J]. Automation Application,2013(4):50-55
[15] 林芳,王煜,付毅宾,等. 基于FPGA的星载步进电机控制电路设计[J]. 中国空间科学技术,2017,37(3):77-84
LIN F,WANG Y,FU Y B,et al. Design of stepper motor control circuit for satellite based on FPGA[J]. Chinese Space Science and Technology,2017,37(3):77-84
[16] 郭闯强,倪风雷,孙敬颞,等. 空间机械臂关节容错控制系统研究[J]. 电机与控制学报,2011,15(2):76-83
GUO C Q,NI F L,SUN J T,et al. Design of the faulttolerant control system for space robotic joint[J]. Electric Machines and Control,2011,15(2):76-83
[17] 李清,吴昊,冯立墨,等. 三余度机电伺服机构及其故障隔离与重构技术[J]. 微电机,2014,47(12):40-44
LI Q,WU H,FENG L M,et al. Technology of reconstitution and fault isolation for trebleredundancy of mechanical and electrical servo mechanism[J]. Micro Motors,2014,47(12):40-44
PDF(1167 KB)

Accesses

Citations

Detail

Sections
Recommended

/