GAO Guannan1,2,3, WANG Min1,2,3, DONG Liang1,2,3, GUO Shaojie1,2,3
Author information+
1. Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China; 2. Key Laboratory for the Structure and Evolution of Celestial Objects,Chinese Academy of Sciences, Kunming 650216,China;; 3. Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100101,China
Show less
History+
Received
Revised
Published
22 Feb 2019
22 May 2020
20 Aug 2021
Issue Date
20 Aug 2021
Abstract
Solar flares and coronal mass ejections(CMEs)are the source disturbances of space weather. The type Ⅱ solar radio burst is the result of electromagnetic radiation caused by CME driven shock moving in corona and interplanetary space. Based on the study of solar physics and space weather forecast,the spectrum characteristics and physical causes of type Ⅱ radio burst,especially VLF type Ⅱ solar radio burst,are analyzed,it shows that VLF type Ⅱ solar radio burst can not only be used to estimate the velocity of CME shock,diagnose the coronal magnetic field,but also provide reference for space weather forecast. The research results can provide useful reference for the scientific research of space VLF radio observation equipment.
GAO Guannan, WANG Min, DONG Liang, GUO Shaojie.
Advances in Space VLF Type Ⅱ Solar Radio Bursts. Journal of Deep Space Exploration, 2021, 8(4): 423‒432 https://doi.org/10.15982/j.issn.2096-9287.2020.20190222001
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] LIN J. Energetics and propagation of coronal mass ejections in different plasma environments[J]. Chinese Journal of Astronomy and Astrophysics,2002,2:539-556 [2] LIN J,SOON W,BALIUNAS S L. Theories of solar eruptions:a review[J]. New Astronomy Reviews,2003,47(2):53-84 [3] GARY D E,KELLER C U. Solar and space weather radiophysics[M]. Dordrecht :Kluwer Academic Publishers,2004. [4] 甘为群,颜毅华,黄宇. 2016—2030年我国空间太阳物理发展的若干思考[J]. 中国科学,2019,49(49):059602 GAN W Q,YAN Y H,HUANG Y. Prospect for space solar physics in 2016—2030[J]. Scientia Sinica Physica,Mechanica & Astronomica,2019,49(49):059602 [5] DULK G A. Radio emission from the Sun and stars[J]. Annual Review of Astronomy and Astrophysics,1985,23:169-224 [6] DULK G A,LEBLANC Y,BOUGERET J L. Type Ⅱ shock and CME from the corona to 1 AU[J]. Geophysical Research letters,1999,26(15):2331-2334 [7] VASANTH V,UMAPATHY S,VR?NAK B,et al. Investigation of the coronal magnetic field using a type Ⅱ solar radio burst[J]. Solar Physics,2014,289(1):251-261 [8] WINTER L M,LEDBETTER K. Type Ⅱ and type Ⅲ radio bursts and their correlation with solar energetic proton events[J]. The Astrophysical Journal,2015,809(1):105 [9] DING L G,WANG Z W,FENG L. Is the enhancement of type Ⅱ radio bursts during CME interactions related to the associated solar energetic particle event?[J]. Research in Astronomy and Astrophysics,2019,19(1):005 [10] 高冠男,林隽,汪敏,等. 太阳米波和分米波Ⅱ型、Ⅲ型射电暴及其精细结构观测研究进展[J]. 天文学进展,2011,1(1):35-47 GAO G N,LIN J,WANG M,et al. Research and observation of and type Ⅲ solar radio metric and decimetric type Ⅱ bursts with fine structures[J]. Progress in Astronomy,2011,1(1):35-47 [11] PAYNE-SCOTT R,YABSLEY D E,BOLTON J G. Relative time of arrival of bursts of solar noise on different radio frequencies[J]. Nature,1947,160(4060):256-257 [12] MCLEAN D J,LABRUM N R. Solar radiophysics:studies of emission from the sun at the metre wavelengths[M]. Cambridge:Cambridge University Press,1985. [13] LIN J,MANCUSO S,VOURLIDAS A. Theoretical investigation of the Onsets of type Ⅱ radio bursts during solar eruptions[J]. The Astrophysical Journal,2006,649(2):1110-1123 [14] GAO G N,WANG M,WU N,et al. The broken lane of a type Ⅱ radio burst caused by collision of a coronal shock with a flare current sheet by collision of a corona shock with a flare current sheet[J]. Solar Physics,2016,291(11):3369-3384 [15] MALITSON H H,FAINBERG J,STONE R G. Observation of a type Ⅱ solar radio burst to 37R[J]. Astrophysical Letters,1973,14:111 [16] CANE H V,STONE R G. Type Ⅱ solar radio bursts,interplanetary shocks,and energetic particle events[J]. Astrophysical Journal,1984,282:339-344 [17] MUJIBER RAHMAN A,UMAPATHY S,SHANMUGARAJU A.,et al Solar and interplanetary parameters of CMEs with and without type Ⅱ radio bursts[J]. Advances in Space Research,2012,50(4):516-525 [18] LEBLANC Y,DULK G A,BOUGERET J L. Tracing the electron density from the corona to 1 AU[J]. Solar Physics,1998,183(1):165-180 [19] MANCUSO S,FRASSATI F,BEMPORAD A,et al. Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio and EUV observations:a different take on the diagnostics of coronal magnetic fields[J]. Astronomy & Astrophysics,2019,624:L2 [20] KISHORE P,RAMESH R,HARIHARAN K,et al. Constraining the solar coronal magnetic field strength using split-band type Ⅱ radio burst observations[J]. The Astrophysical Journal,2016,832:59 [21] BASTIAN T S. NgVLA observations of the solar wind,science with a next generation very large array[J]. ASP Conference Series,2018,517:87 [22] KOOI J E,FISCHER P D BUFFO J J,et al. VLA measurements of faraday rotation through coronal mass ejections[J]. Solar Physics,2017,292:56 [23] TIM B,JAMES C,JUSTIN K,et al. Astro2020:decadal survey on astronomy and astrophysics[EB/OL].[2020-05-22]. https://www.nationalacademies.org/our-work/decadal-survey-on-astronomy-and-astrophysics-2020-astro2020. [24] NICOLINA C,KONTAR EDUARD P,HOLMAN GORDON D,et al. CME-driven shock and type Ⅱ solar radio burst band splitting[J]. The Astrophysical Journal,2018,868:79 [25] ZUCCA P,MOROSAN D E,ROUILLARD A P,et al. Shock location and CME 3D reconstruction of a solar type Ⅱ radio burst with LOFAR[J]. Astronomy & Astrophysics,2018,615:A89 [26] DU G H,KONG X L,CHEN Y,et al. An observational revisit of band-split solar type-Ⅱ radio bursts[J]. The Astrophysical Journal,2015,81(1):52 [27] CHERNOV G P,KAISER M L,BOUGERET J L,et al. Fine structure of solar radio bursts observed at decametric and hectometric waves[J]. Solar Physics,2007,241(1):145-169 [28] M?KEL? P,GOPALSWAMY N,REINER M J,et al. Source regions of the type Ⅱ radio burst observed during a CME-CME interaction on 2013 May 22[J]. The Astrophysical Journal,2016,827(2):141 [29] M?KEL? P,GOPALSWAMY N,AKIYAMA S. Direction-finding analysis of the 2012 July 6 type Ⅱ solar radio burst at low frequencies[J]. The Astrophysical Journal,2018,867(1):40 [30] HEGEDUS ALEXANDER M,KASPER JUSTIN C,MANCHESTER WARD B.Tracking solar type Ⅱ bursts with space based radio interferometers[C]// American Astronomical Society,AAS Meeting #232.[S. l.]:AAS,2018. [31] MACDOWALL R J,KLIMAS A J,LENGYEL-FREY D,et al.Comparison of interplanetary type Ⅱ radio burst observations by ISEE-3,Ulysses and Wind with Applications to Space Weather Prediction[C]//31st ESLAB Symposium.Noordwijk. Netherlands:ESA,1997. [32] GOPALSWAMY N. Solar and geospace connections of energetic particle events[J]. Geophysical Research Letters,2003,30(12):321-337 [33] GOPALSWAMY N,YASHIRO S,AKIYAMA S,et al. Coronal mass ejections,type Ⅱ radio bursts,and solar energetic particle events in the SOHO era[J]. Annales Geophysicae,2008,26(10):3033-3047 [34] REAMES DONALD V. The two sources of solar energetic particles[J]. Space Science Reviews,2013,175(1-4):53-92 [35] SWALWELL B,DALLA S,WALSH R W. Solar energetic particle forecasting algorithms and associated false alarms[J]. Solar Physics,2017,292(11):173 [36] SMART D F,SHEA M A. A simplified model for timing the arrival of solar flare‐initiated shocks[J]. Journal of Geophysical Research,1985,90:183-190 [37] SMITH Z,DRYER M,ORT E,et al. Performance of interplanetary shock prediction models:STOA and ISPM[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2000,62(14):1265-1274 [38] DRYER M,FRY C D,SUN W,et al. Prediction in real time of the 2000 July 14 heliospheric shock wave and its companions during the 'Bastille' epoch[J]. Solar Physics,2001,204(1/2):265-284 [39] FENG X S,ZHAO X H. A new prediction method for the arrival time of interplanetary shocks[J]. Solar Physics,2006,238(1):167-186 [40] MANOHARAN P K,ANANTHAKRISHNAN S,DRYER M,et al. Solar wind velocity and normalized scintillation index from single-station IPS observations[J]. Solar Physics,1995,156(2):377-393 [41] JANARDHAN P,BALASUBRAMANIAN V,ANANTHAKRISHNAN S,et al. Travelling interplanetary disturbances detected using interplanetary scintillation at 327 MHz[J]. Solar Physics,1996,166(2):379-401 [42] CREMADES H,ST CYR O C,KAISER M L. A tool to improve space weather forecasts:Kilometric radio emissions from Wind/WAVES[J]. SPACE WEATHER,2007,5(8):S08001 [43] STONE R G,BOUGERET J L,CALDWELL J,et al. The Unified radio and plasma wave investigation[J]. Astronomy and Astrophysics Supplement Series,1992,92(291):291-316 [44] LENGYEL-FREY D,THEJAPPA G,MACDOWALL R J,et al. Ulysses observations of wave activity at interplanetary shocks and implications for type Ⅱ radio bursts[J]. Journal of Geophysical Research,1997,102(A2):2611-2622 [45] BOUGERET J L,KAISER M L,KELLOGG P J,et al. Waves:the radio and plasma wave investigation on wind spacecraft[J]. Space Science Review,1995,71(1-4):231-263 [46] BOUGERET J L,GOETZ K,KAISER M L,et al. SWAVES:the radio and plasma wave investigation on the STEREO mission[J]. Space Science Review,2008,136(1-4):487-528 [47] NASA.Solar Orbiter[EB/OL].(2020-02)[2020-05-22]. https://science.nasa.gov/missions/solar-orbiter/. [48] KASPER JUSTIN C,ROBERT A,GERRY A,et. al Solar Wind Electrons Alphas and Protons(SWEAP)investigation:design of the solar wind and coronal plasma instrument suite for solar probe plus[J]. Space Science Reviews,2016,204(1-4):131-186 [49] BALE S D,GOETZ K,HARVEY P R,et al. The FIELDS instrument suite for solar probe plus. measuring the coronal plasma and magnetic field,plasma waves and turbulence,and radio signatures of solar transients[J]. Space Science Reviews,2016,204(1-4):49-82 [50] 林隽,汪敏,田晖,等. 太阳爆发的抵近探测[J]. 中国科学,2019,49(49):059607 LIN J,WANG M,TIAN H,et al. In situmeasurements of the solar eruption[J]. Scientia Sinica Physica,Mechanica & Astronomica,2019,49(49):059607 [51] 梅丽,苏彦,周建锋. 极低频射电天文观测现状与未来发展[J]. 天文研究与技术,2018,15(2):127-139 MEI L,SU Y,ZHOU J F. The history and development of the low-frequency radio observation[J]. Astronomical Research & technology,2018,15(2):127-139 [52] 张韬,苏彦. 嫦娥四号低频射电频谱仪降低背景噪声方法的研究[J]. 天文研究与技术,2019,16(3):312-320 ZHANG T,SU Y. Research of the method for reducing background of very low frequency radio spectrumon Chang'E-4[J]. Astronomical Research & Technology,2019,16(3):312-320 [53] 薛长斌,周晴,王雷,等. “嫦娥4号”任务有效载荷系统设计与实现[J]. 深空探测学报(中英文),2017,4(6):515-521 XUE C B,ZHOU Q,WANG L,et al. Design and implementation of payload system in chang’e-4 mission[J]. Journal of Deep Space Exploration,2017,4(6):515-521 [54] 贾瑛卓,邹永廖,薛长斌,等. 嫦娥四号任务科学目标和有效载荷配置[J]. 空间科学学报,2018,38(1):118-130 JIA Y Z Z,ZOU Y L,XUE C B,et al. Scientific objectives and payloads of Chang’ E-4 mission[J]. Chinese Journal of Space Science,2018,38(1):118-130 [55] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416 WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.