PDF(1953 KB)
A Review of Technology Development of Thermionic Energy Conversion for Space Application
- ZHONG Wuye, ZHAO Shouzhi, ZHENG Jianping, LV Zheng, XIE Jiachun
Author information
+
China Institute of Atomic Energy,Beijing 102413,China
Show less
History
+
Received |
Revised |
14 Jan 2020 |
31 Jan 2020 |
Issue Date |
|
20 May 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 吴伟仁,刘继忠,赵小津,等. 空间核反应堆电源研究[J]. 中国科学:技术科学,2019,49(1):1-12
WU W R,LIU J Z,ZHAO X J,et al. System engineering research and application foreground of space nuclear reactor power generators[J]. SciSin Tech,2019,49(1):1-12
[2] 胡古,赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报,2017,4(5):430-443
HU G,ZHAO S Z. Overview of space nuclear reactor power technology[J]. Journal of Deep Space Exploration,2017,4(5):430-443
[3] 杨继材,柯国土,郑剑平,等.空间核电源中的热电转换[M]. 哈尔滨:哈尔滨工程大学出版社,2017.
[4] GRYAZNOV G M. 30th anniversary of the start up of TOPAZ - the first thermionic nuclear reactor in the world[J]. Atomic Energy,2000,89(1):510-515
[5] 陈伟东,闫淑芳,钟学奎. 氢化锆在450~600 ℃下氧化动力学的研究[J]. 稀有金属材料与工程,2011,40(6):1038-1040
CHEN W D,YAN S F,ZHONG X K. Study on Oxidation Kinetics of Zirconium hydride at 450-600 ℃[J]. Rare Metal Materials and Engineering,2011,40(6):1038-1040
[6] 胡古. 空间热离子反应堆瞬态分析方法研究[D]. 北京:中国原子能科学研究院,2008.
[7] 杨启法,卢浩琳. 空间核反应堆电源研究和应用[J]. 航天器工程,1995,4(4):11-20
YANG Q F,LU H L. Research and application of space nuclear reactor power[J]. Spacecraft Engineering,1995,4(4):11-20
[8] 古哈尔金 H E,波诺马廖夫 H H,乌索夫 B A. 热电转换和热离子转
换式空间核电源“罗马什卡”和“叶尼塞”[M]. 北京:中国原子能出版
社,2016:61-66.
[9] YARYGIN V I,SIDELNIKOV V N,MIRONOV V S, et al. Energy conversion options for NASA’s space nuclear power systems initiative—underestimated capability of thermionics[C]//2nd International Energy Conversion Engineering Conference. [S.l.]:NASA,2004.
[10] SAN FRANCISCO FIELD OFFICE. Space-R thermionic space nuclear power system design and technology demonstration. Semiannual Technical Progress Repor[R]. [S.l.]:San Francisco Field Office,1993.
[11] EL-GENK M S,LUKE J R. Performance comparison of thermionic converters with smooth and macro-grooved electrodes[J]. Energy Conversion & Management,1999,40:319-334
[12] EL-GENK M S,MOMOZAKI Y. An experimental investigation of the performance of a thermionic converter with planar molybdenum electrodes for low temperature applications[J]. Energy Conversion and Management,2002,43:911-936.
[13] BAKSHT F G,DYUZHEV G A,et al. Thermionic converters and low temperature plasma[M]. Moscow:Acad. Sci. USSR,1973.
[14] HATSOPOULOS G N,GYFTOPOULOS E P. Thermionic energy conversion,volume Ⅰ:processes and devices[M]. USA:The MIT Press,1979.
[15] HATSOPOULOS G N,GYFTOPOULOS E P. Thermionic energy conversion,volume Ⅱ:theory,technology,and application[M]. USA:The MIT Press,1979.
[16] RASOR N S. Thermionic energy conversion plasmas[J]. IEEE Transaction on Plasma Science,1991,19(6):1191-1193
[17] NIKOLAEV Y V,KUCHEROV R Y,ERYOMIN S A,et al. Conductively coupled multi-cell TFE with electric heating pretest ability[C]//AIP Conference.[S.l.]:AIP,1998(420):318-423.
[18] STRECKERT H,BEGG L,PELESSONEND D. Design of conductively coupled multi-cell thermionic fuel element[C]//AIP Conference.[S.l.]:AIP,1999(458):1458-1463.
[19] GIRALDEZ E,DESPLAT J L. Emitter tri-layer technology[C]//AIP Conference.[S.l.]:AIP,1999(458):1603-1608.
[20] STRECKERT H H,BEGG L L,NIKOLAEV Y V,et al. Development and testing of conductively coupled multi-cell TFE components[C]//AIP Conference. [S.l.]:AIP,2000(504):1307-1312.
[21] DESPLAT J L,STRECKERT H,TAMORIA T. Tests of a conductively coupled multi-cell thermionic fuel element[C]//AIP Conference. [S.l.]:AIP,2001(552):1119-1124.
[22] MARTINEZ M,STRECKERT H,IZHVANOV O,et al. Development and testing of a conductively coupled three cell thermionic converter[C]//1st International Energy Conversion Engineering Conference(IECEC). Portsmouth,Virginia:AIAA,2003.
[23] YARYGIN D V,MIRONOV V S,SOLOV’EV N P,et al. High-output thermionic converter based on a metal-oxygen system on the collector[J]. Atomic Energy,2000,80(1):546-554
[24] NIKOLAEV Y V,KOLESOV V S,et al. Molybdenum and tungsten single crystal alloys with abnormally high creep strength for space nuclear power and propulsion systems[C]//Proc. 10th symp. on space nuclear power and propulsion. Albuquerque:[s.n.],1993:267-274.
[25] GONTAR A S,NELIDOV M V,NIKOLAEV Y V,et al. Fuel elements of thermionic converters[M]. [S.l.]:Sandia Report,1997.
[26] GONTAR A S,KUCHEROV R Y,NIKOLAEV Y V,et al. Merits of the refractory metals single crystals in application to the TFE[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. USA:IEEE,1996:951-956.
[27] LV Y W,YU X D,TAN C W,et al. Deposition temperature effects on tungsten single-crystal layer by chemical vapor transport[J]. Journal of Crystal Growth,2011,329:62-66
[28] 吕延伟. 化学气相输运法制备特定择优取向的钨单晶涂层研究[D]. 北京:北京理工大学,2012.
LV Y W. Study of tungsten monocrystal layers with a preferred crystallographic orientation obtained by chemical vapor transportation deposition[D]. Beijing:Beijing Institute of Technology,2012.
[29] NIKOLAEV Y V,KOLESOV V S,ZUBAREV P Z,et al. Molybdenum and tungsten single crystal alloys with abnormally high creep strength for space nuclear power and propulsion systems[C]//Proc. 10th symp. on space nuclear power and propulsion. Albuquerque:[s.n.],1993,1:267-274
[30] 乌沙考夫 Б А(著),李耀鑫(译). 热离子能量转换器的理论基础[M]. 北京:中国原子能科学研究院内部资料,1999:192-201.
[31] ЯРЫГИН В И,РУЖНИКОВ В А,СИНЯВСКИЙ В В. Космические и Наземные Ядерные Энергетические Установки Прямого Преобразования Энергии[M]. Russia:[s.n.],2016.
[32] 西尼亚夫斯基B B. 热离子燃料元件堆内考验和实验研究的方法和手段[M]. 北京:中国原子能科学研究院内部资料,2005:52-53.
[33] RASOR N S. Thermionic energy conversion plasmas[J]. IEEE Transaction on Plasma Science,1991,19(6):1201-1202
[34] SIDELNIKOV V N. On the Electron-from-Metals work function[J]. Surface Roentgen and Neutron Research,2000(8):42-44
[35] SIDELNIKOV V N. Non-monotonous potential barrier for electrons inside adsorbed layer on thermionic converter collector[J]. Atomic Power,2000,89(1):67-70
[36] GERASHCHENKO S S,GUSEVA M I,KORYUKIN V A,et al. Investigation of the characteristics of thermionic converters with a Mo(110)single-crystal collector with ion-implanted oxygen[J]. Atomic Energy,1994,76(2):147-149
[37] YARYGIN V I,SIDELNIKOV V N,MIRONOV V S. Energy conversion options for NASA’s space nuclear power systems initiative—underestimated capability of thermionics[C]//2nd International Energy Conversion Engineering Conference.[S.l.]:NASA,2004.
[38] YARYGIN V I,IONKIN V I. New-generation space thermionic nuclear power systems with out-of-core electricity generating systems[J]. Atomic Energy,2000,89(1):528-540
[39] US. Collector for thermionic energy converter covered with carbon like material and having a low electronic work function:US, 5578886[P]. 1996.
[40] YARYGIN V I. Experimental studies of properties of excited states of cesium(rydberg matter)in the interelectrode plasma of a low-temperature thermal to electric energy thermionic converter[J]. J Clust Sci,2012(23):77-93
[41] EL-GENK M S,MOMOZAKI Y. An experimental investigation of the
performance of a thermionic converter with planar molybdenum
electrodes for low temperature applications[J]. Energy Conversion and
Management,2002(43):911-936.
[42] HATSOPOULOS G N,GYFTOPOULOS E P. Thermionic energy conversion,volume Ⅱ:theory,technology,and application[M]. USA:The MIT Press,1979:510.
[43] BENKE S M. Operational testing and thermal modeling of a TOPAZ-II single cell thermionic fuel element test stand[D]. [S.l.]:Naval Postgraduate School,1994.
[44] 西尼亚夫斯基 B B. 热离子燃料元件堆内考验和实验研究的方法和手段[M]. 北京:中国原子能科学研究院,2005:101-177.