PDF(528 KB)
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy
Advanced Power Source Technology of Deep Space Exploration
- NIU Changlei1, LUO Zhifu1, LEI Yingjun2, WANG Wenqiang3, ZHENG Jianjie4, QIAO Xuerong5, LUO Hongyi1, HU Wenjun6, ZHONG Wuye1
Author information
+
1. China Institute of Atomic Energy,Beijing 102413,China;
2. Beijing Institute of Spacecraft System Engineering,Beijing 100094,China;
3. Department of Physical Power,Shanghai Institute of Space Power,Shanghai 200245,China;
4. Tianjin Space Power Technology Co.,Ltd,Tianjin 300384,China;
5. Tianjin Institute of Power Sources,Tianjing 222500,China;
6. Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 621999,China
Show less
History
+
Received |
Revised |
11 Jan 2020 |
02 Feb 2020 |
Issue Date |
|
20 May 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] AGHA R. Space exploration-surgical insights and future perspectives[J]. International Journal of Surgery,2005,3(4):263-267
[2] EHRENFREUND P,MCKAY C,RUMMEL J D,et al. Toward a global space exploration program:a stepping stone approach[J]. Advances in Space Research,2012,49(1):2-48
[3] TOM S. Space exploration resources[J]. MAC Newsletter,2011,38(3):1-10
[4] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18
YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18
[5] 申振荣,张伍,贾阳,等. 嫦娥三号巡视器及其技术特点分析[J]. 航天器工程,2015,24(5):8-13
SHEN Z R,ZHANG W,JIA Y,et al. System design and technical characteristics analysis of Chang’e-3 lunar rover[J]. Spacecraft Engineering,2015,24(5):8-13
[6] CARDELL G,ULLOA-SEVERINO A,GROSS M. The design and operation of the Dawn power system[C]//Proceedings of the 10th annual International Energy Conversion Engineering Conference. Washington D. C.:AIAA,2012:414-420.
[7] REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences,2014,70:1-27
[8] STARR S O,MUSCATELLO A C. Mars in situ resource utilization:a review[J]. Planetary and Space Science,2020,182:104824
[9] YOUNG R E. The Galileo probe:how it has changed our understanding of Jupiter[J]. New Astronomy Reviews,2003,47(1):1-51
[10] EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica,2009,64(9):833-849
[11] WARMANN E C,ESPINET-GONZALEZ P,VAIDYA N,et al. An ultralight concentrator photovoltaic system for space solar power harvesting[J]. Acta Astronautica,2020,170:443-451
[12] 新华. 中国未来将实施四次重大深空探测任务[J]. 太空探索,2017(3):5-5
XIN H. China will carry out four major deep-space exploration missions in the future[J]. Space Exploration,2017(3):5-5
[13] 王建昭,田岱,张庆祥,等. 木星环绕探测任务中的内带电风险评估[J]. 深空探测学报,2017,4(6):564-570
WANG J Z,TIAN D,ZHANG Q X,et al. Internal charging evaluation in Jupiter exploration mission[J]. Journal of Deep Space Exploration,2017,4(6):564-570
[14] LAZZARI M,SCROSATI B. Rechargeable lithium batteries with non-metal electrodes[J]. J. Electrochem. Soc.,1980,127:773-776
[15] DAN P,MENGERITSKY E,GERONOV Y,et al. More details on the new LiMnO2 rechargeable battery technology developed at Tadiran[J]. J. Power Sources,1997,54:443-447
[16] MIZUSHIMA K,JONES P C,WISEMAN P J,et al. LixCoO2(0<x<-1):a new cathode material for batteries of high energy density[J]. Mater. Res. Bull.,1980,15:783-789
[17] NAKAJIMA T,HAGIWARA R,MORIYA K,et al. Discharge characteristics of poly (carbon monofluoride) prepared from the residual carbon obtained by thermal decomposition fo poly (dicarbon monofluoride) and graphite oxide[J]. Journal of The Electrochemical Society,1986,133(9):1761-1766
[18] HUTZENLAUB T,THIELE S,ZENGERLE R,et al. Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode[J]. Electrochim. Acta,2012,15:A33-A36
[19] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367
[20] JONES P A,SPENCE B R. Spacecraft solar array technology tends[J]. Aerospace and Electronic Systems Magazine,2011,26(8):17-28
[21] Best research-cell efficiency chart[R]. [S. l.]:National Renewable Energy Laboratory,http://nrel.gov/pv/cell-efficiency.html#.
[22] STELLA P,MUELLER R,DAVIS G,et al. The Environmental Performance at Low Intensity,Low Temperature (LILT) of High Efficiency Triple Junction Solar Cells[C]//Proceedings of the 2nd IECEC. Providence,RI,USA:IECEC,2004.
[23] 张文佳,刘治钢,张晓峰,等. 木星环绕探测器电源系统设计研究[J]. 航天器工程,2019,28(02):97-103
ZHANG W J,LIU Z G,ZHANG X F,et al. Research of power system design of Jupiter orbiting probe[J]. Sacecraft Engineering,2019,28(02):97-103
[24] LANGE R G,CARROLL W P. Review of recent advances of radioisotope power systems[J]. Energy Conversion and Management,2008(49):393-401
[25] O’BRIEN R C. Radioisotope and nuclear technologies for space exploration[D]. Leicester:Physics Research In the Department of Physics Astronomy University of Leicester,2010.
[26] CAILLAT T,HUANG C K,CHENG B,et al. Advanced Thermoelectric materials for radioisotope thermoelectric generators[C]//25th Symposium on Space Nuclear Power. Albuquerque,NM:[s.n.],2008.
[27] GEORGE T G. General Purpose Heat Source safety verification test program:edge-on flyer plate tests:LA-10872-MS[R]. New Mexico:Los Alamos National Laboratory,1987.
[28] GEORGE T G,TATE R E,AXLER K M. General purpose development safety verification test program:bullet/fragment test series:LA-1036-MS[R]. 1985.
[29] U. S. Congress. Office of technology assessment,power sources for remote arctic applications:OTA-BP-ETI 129[R]. USA:U. S. Congress,1994.
[30] IAEA. Safety framework for nuclear power source applications in outer space:A/AC. 105/934[R]. Vienna:IAEA,2009.
[31] SUMMERER L,WILCOX R E,BECHTEL R. The international safety framework for nuclear power source applications in outer space-useful and substantial guidance[J]. Acta Astronautica,2015,111(1):89-101
[32] Cassini RTG program final technical report:No. RR18[R]. USA: Department of Energy,1998.
[33] LIAO C N,LEE C H,CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper[J]. Electrochem. Solid-state Lett.,2007,10(9):23-25
[34] CAILLAT T,SAKAMOTO J,JEWELL A,et al. Status of skutterrudite-based segmented thermoelectric technology components development at JPL[C]//23rd Symposium on Space Nuclear Power and Propulsion STAIF 2006. USA:JPL,2006.
[35] BENNETT G L,LOMBARDO J J,HEMLER R J,et al. Mission of daring:the general-purpose heat source radioisotope thermoelectric generator[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). San Diego,California:IECEC,2006.
[36] Final report for the general purpose heat source-radioisotope thermoelectric generator program:FESP-7209[R]. Philadelphia,USA: General Electric Company, 1991.
[37] HAMMEL T E,BENNETT R,KEYSER S,et al. Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) performance data and application to life modeling[C]//11th International Energy Conversion Engineering Conference. San Jose,CA:[s.n.],2013.
[38] NASA. NASA technology roadmaps-TA3:space power and energy source[R]. USA:NASA Technical Report. 2015.
[39] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[R]. Vienna:IAEA,2005.
[40] ANDREEV P V,GULEVICH A V. Physical and engineering potential of thermionics for advanced projects of sub-megawatt SNPS[C]//Nuclear and Emerging Technologies for space CNETS-2012. USA:ANS,2012.
[41] STAUB D W. SNAP programs:summary report:AI-AEC-13068[R]. Canoga Park,Calif:Atomics International Div.,1973.
[42] DIX G P,VOSS S S. Pied piper:a history overview of the US space nuclear reactor program[M]. Malabar,Florida:Orbit Book Company,Inc. 1985.
[43] DEMUTH S F. SP-100 space reactor design[J]. Progress in Nuclear Energy,2003,42(3):323-359
[44] SHALTENS R K,WONG W A. Advanced stirling technology develop at NASA Glenn research center[C]//NASA Science Technology Conference. Maryland:NASA,2007.
[45] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海:上海交通大学出版社,2016.
SU Z T,YANG J C,KE G T. Space nuclear power[M]. Shanghai:Shanghai Jiaotong University Press,2016.
[46] ANDERSON R V,ATKINS D F,BOST D S,et al. Power plant system assessment-final report[R]. USA:Technical Report. SP-100 Program. NASA,1983.
[47] AUGUST W C,WILLIAM C M. Irradiation effects on fuels for space reactors[M]. Malabar,Fl:Orbit Book Company,1985.
[48] HARTY R B,MASON L S. 100 kW Lunar/Marr surface power utilizing the SP-100 reactor with dynamic conversion[C]//26th Intersociety Energy Conversion Engineering Conf.. Boston:[s.n.],1991.
[49] GIBSON M A,MASON L,BOWMAN C. Development of NASA’s small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Cleveland:[s.n.],2014.
[50] POSTON D. Space nuclear reactor engineering:LA-UR-17-21903[R].Los Alamos, USA: [s.n.], 2017.
[51] United Nations. Principles relevant to the use of nuclear power sources in outer space[C]//85th Plenary Meeting. VIENNA:United Nations,1992.