Advanced Power Source Technology of Deep Space Exploration

NIU Changlei1, LUO Zhifu1, LEI Yingjun2, WANG Wenqiang3, ZHENG Jianjie4, QIAO Xuerong5, LUO Hongyi1, HU Wenjun6, ZHONG Wuye1

PDF(528 KB)
PDF(528 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (1) : 24-34. DOI: 10.15982/j.issn.2095-7777.2020.20200002
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy

Advanced Power Source Technology of Deep Space Exploration

  • NIU Changlei1, LUO Zhifu1, LEI Yingjun2, WANG Wenqiang3, ZHENG Jianjie4, QIAO Xuerong5, LUO Hongyi1, HU Wenjun6, ZHONG Wuye1
Author information +
History +

Abstract

Advanced power supply technology is the prerequisite for deep space exploration mission. Based on the requirements of power supply system of China’s follow-up deep space exploration missions, such as the explorations of polar region of Lunar, small celestial bodies, Mars, Jupiter, and so on, the advanced power source technologies for deep space exploration are reviewed, including?the chemical battery, solar cell, radioisotope thermoelectric generator (RTG) and space nuclear reactor power. According?to the?requirements?of power supply system of deep space exploration,?the remarkable feature, brief history, application limits and development proposals of Lithium ions battery, solar cell, Pu-238 RTG and space nuclear reactor power are presented, and?focusing on the analysis?of the?key technology, practical application, application prospects of Pu-238 RTG and space nuclear reactor power, providing a reference for long-term development of ?advanced power source technology of deep space exploration.

Keywords

deep space exploration / advanced energy / solar power system / Lithium ions battery / Plutonium-238 RTG / space nuclear reactor power

Cite this article

Download citation ▾
NIU Changlei, LUO Zhifu, LEI Yingjun, WANG Wenqiang, ZHENG Jianjie, QIAO Xuerong, LUO Hongyi, HU Wenjun, ZHONG Wuye. Advanced Power Source Technology of Deep Space Exploration. Journal of Deep Space Exploration, 2020, 7(1): 24‒34 https://doi.org/10.15982/j.issn.2095-7777.2020.20200002

References

[1] AGHA R. Space exploration-surgical insights and future perspectives[J]. International Journal of Surgery,2005,3(4):263-267
[2] EHRENFREUND P,MCKAY C,RUMMEL J D,et al. Toward a global space exploration program:a stepping stone approach[J]. Advances in Space Research,2012,49(1):2-48
[3] TOM S. Space exploration resources[J]. MAC Newsletter,2011,38(3):1-10
[4] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18
YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18
[5] 申振荣,张伍,贾阳,等. 嫦娥三号巡视器及其技术特点分析[J]. 航天器工程,2015,24(5):8-13
SHEN Z R,ZHANG W,JIA Y,et al. System design and technical characteristics analysis of Chang’e-3 lunar rover[J]. Spacecraft Engineering,2015,24(5):8-13
[6] CARDELL G,ULLOA-SEVERINO A,GROSS M. The design and operation of the Dawn power system[C]//Proceedings of the 10th annual International Energy Conversion Engineering Conference. Washington D. C.:AIAA,2012:414-420.
[7] REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences,2014,70:1-27
[8] STARR S O,MUSCATELLO A C. Mars in situ resource utilization:a review[J]. Planetary and Space Science,2020,182:104824
[9] YOUNG R E. The Galileo probe:how it has changed our understanding of Jupiter[J]. New Astronomy Reviews,2003,47(1):1-51
[10] EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica,2009,64(9):833-849
[11] WARMANN E C,ESPINET-GONZALEZ P,VAIDYA N,et al. An ultralight concentrator photovoltaic system for space solar power harvesting[J]. Acta Astronautica,2020,170:443-451
[12] 新华. 中国未来将实施四次重大深空探测任务[J]. 太空探索,2017(3):5-5
XIN H. China will carry out four major deep-space exploration missions in the future[J]. Space Exploration,2017(3):5-5
[13] 王建昭,田岱,张庆祥,等. 木星环绕探测任务中的内带电风险评估[J]. 深空探测学报,2017,4(6):564-570
WANG J Z,TIAN D,ZHANG Q X,et al. Internal charging evaluation in Jupiter exploration mission[J]. Journal of Deep Space Exploration,2017,4(6):564-570
[14] LAZZARI M,SCROSATI B. Rechargeable lithium batteries with non-metal electrodes[J]. J. Electrochem. Soc.,1980,127:773-776
[15] DAN P,MENGERITSKY E,GERONOV Y,et al. More details on the new LiMnO2 rechargeable battery technology developed at Tadiran[J]. J. Power Sources,1997,54:443-447
[16] MIZUSHIMA K,JONES P C,WISEMAN P J,et al. LixCoO2(0<x<-1):a new cathode material for batteries of high energy density[J]. Mater. Res. Bull.,1980,15:783-789
[17] NAKAJIMA T,HAGIWARA R,MORIYA K,et al. Discharge characteristics of poly (carbon monofluoride) prepared from the residual carbon obtained by thermal decomposition fo poly (dicarbon monofluoride) and graphite oxide[J]. Journal of The Electrochemical Society,1986,133(9):1761-1766
[18] HUTZENLAUB T,THIELE S,ZENGERLE R,et al. Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode[J]. Electrochim. Acta,2012,15:A33-A36
[19] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367
[20] JONES P A,SPENCE B R. Spacecraft solar array technology tends[J]. Aerospace and Electronic Systems Magazine,2011,26(8):17-28
[21] Best research-cell efficiency chart[R]. [S. l.]:National Renewable Energy Laboratory,http://nrel.gov/pv/cell-efficiency.html#.
[22] STELLA P,MUELLER R,DAVIS G,et al. The Environmental Performance at Low Intensity,Low Temperature (LILT) of High Efficiency Triple Junction Solar Cells[C]//Proceedings of the 2nd IECEC. Providence,RI,USA:IECEC,2004.
[23] 张文佳,刘治钢,张晓峰,等. 木星环绕探测器电源系统设计研究[J]. 航天器工程,2019,28(02):97-103
ZHANG W J,LIU Z G,ZHANG X F,et al. Research of power system design of Jupiter orbiting probe[J]. Sacecraft Engineering,2019,28(02):97-103
[24] LANGE R G,CARROLL W P. Review of recent advances of radioisotope power systems[J]. Energy Conversion and Management,2008(49):393-401
[25] O’BRIEN R C. Radioisotope and nuclear technologies for space exploration[D]. Leicester:Physics Research In the Department of Physics Astronomy University of Leicester,2010.
[26] CAILLAT T,HUANG C K,CHENG B,et al. Advanced Thermoelectric materials for radioisotope thermoelectric generators[C]//25th Symposium on Space Nuclear Power. Albuquerque,NM:[s.n.],2008.
[27] GEORGE T G. General Purpose Heat Source safety verification test program:edge-on flyer plate tests:LA-10872-MS[R]. New Mexico:Los Alamos National Laboratory,1987.
[28] GEORGE T G,TATE R E,AXLER K M. General purpose development safety verification test program:bullet/fragment test series:LA-1036-MS[R]. 1985.
[29] U. S. Congress. Office of technology assessment,power sources for remote arctic applications:OTA-BP-ETI 129[R]. USA:U. S. Congress,1994.
[30] IAEA. Safety framework for nuclear power source applications in outer space:A/AC. 105/934[R]. Vienna:IAEA,2009.
[31] SUMMERER L,WILCOX R E,BECHTEL R. The international safety framework for nuclear power source applications in outer space-useful and substantial guidance[J]. Acta Astronautica,2015,111(1):89-101
[32] Cassini RTG program final technical report:No. RR18[R]. USA: Department of Energy,1998.
[33] LIAO C N,LEE C H,CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper[J]. Electrochem. Solid-state Lett.,2007,10(9):23-25
[34] CAILLAT T,SAKAMOTO J,JEWELL A,et al. Status of skutterrudite-based segmented thermoelectric technology components development at JPL[C]//23rd Symposium on Space Nuclear Power and Propulsion STAIF 2006. USA:JPL,2006.
[35] BENNETT G L,LOMBARDO J J,HEMLER R J,et al. Mission of daring:the general-purpose heat source radioisotope thermoelectric generator[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). San Diego,California:IECEC,2006.
[36] Final report for the general purpose heat source-radioisotope thermoelectric generator program:FESP-7209[R]. Philadelphia,USA: General Electric Company, 1991.
[37] HAMMEL T E,BENNETT R,KEYSER S,et al. Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) performance data and application to life modeling[C]//11th International Energy Conversion Engineering Conference. San Jose,CA:[s.n.],2013.
[38] NASA. NASA technology roadmaps-TA3:space power and energy source[R]. USA:NASA Technical Report. 2015.
[39] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[R]. Vienna:IAEA,2005.
[40] ANDREEV P V,GULEVICH A V. Physical and engineering potential of thermionics for advanced projects of sub-megawatt SNPS[C]//Nuclear and Emerging Technologies for space CNETS-2012. USA:ANS,2012.
[41] STAUB D W. SNAP programs:summary report:AI-AEC-13068[R]. Canoga Park,Calif:Atomics International Div.,1973.
[42] DIX G P,VOSS S S. Pied piper:a history overview of the US space nuclear reactor program[M]. Malabar,Florida:Orbit Book Company,Inc. 1985.
[43] DEMUTH S F. SP-100 space reactor design[J]. Progress in Nuclear Energy,2003,42(3):323-359
[44] SHALTENS R K,WONG W A. Advanced stirling technology develop at NASA Glenn research center[C]//NASA Science Technology Conference. Maryland:NASA,2007.
[45] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海:上海交通大学出版社,2016.
SU Z T,YANG J C,KE G T. Space nuclear power[M]. Shanghai:Shanghai Jiaotong University Press,2016.
[46] ANDERSON R V,ATKINS D F,BOST D S,et al. Power plant system assessment-final report[R]. USA:Technical Report. SP-100 Program. NASA,1983.
[47] AUGUST W C,WILLIAM C M. Irradiation effects on fuels for space reactors[M]. Malabar,Fl:Orbit Book Company,1985.
[48] HARTY R B,MASON L S. 100 kW Lunar/Marr surface power utilizing the SP-100 reactor with dynamic conversion[C]//26th Intersociety Energy Conversion Engineering Conf.. Boston:[s.n.],1991.
[49] GIBSON M A,MASON L,BOWMAN C. Development of NASA’s small fission power system for science and human exploration[C]//12th International Energy Conversion Engineering Conference. Cleveland:[s.n.],2014.
[50] POSTON D. Space nuclear reactor engineering:LA-UR-17-21903[R].Los Alamos, USA: [s.n.], 2017.
[51] United Nations. Principles relevant to the use of nuclear power sources in outer space[C]//85th Plenary Meeting. VIENNA:United Nations,1992.
PDF(528 KB)

Accesses

Citations

Detail

Sections
Recommended

/