The Plutonium-238 Radioisotope Thermoelectric Generator in the Deep Space Exploration

LUO Hongyi, NIU Changlei, WU Shengna, LI Xin, TANG Xian, LUO Zhifu

PDF(1385 KB)
PDF(1385 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (1) : 61-72. DOI: 10.15982/j.issn.2095-7777.2020.20191129001
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy
Guest Editor:Professor LUO Zhifu,China Institute of Atomic Energy

The Plutonium-238 Radioisotope Thermoelectric Generator in the Deep Space Exploration

  • LUO Hongyi, NIU Changlei, WU Shengna, LI Xin, TANG Xian, LUO Zhifu
Author information +
History +

Abstract

The Plutonium-238 radioisotope thermoelectric generator (Plutonium-238 RTG) can work continuously without maintenance for a long time in harsh environment. It can supply power and thermal energy at the same time, which is an ideal energy source for deep space exploration missions. Firstly, the electricity power generation theory, basic structure, application history and development tendency of Plutonium-238 RTG are described in this paper. Then the key technologies for the development of Plutonium-238 RTG are presented, combined with the technology development of Plutonium-238 RTG in foreign countries and the requirements for deep space exploration. The above-mentioned key technologies are analyzed and discussed, providing a reference to the technology development and engineering application of Plutonium-238 RTG in China.

Keywords

Plutonium-238 RTG / Plutonium-238 RHU / thermoelectric conversion / safety / reliability

Cite this article

Download citation ▾
LUO Hongyi, NIU Changlei, WU Shengna, LI Xin, TANG Xian, LUO Zhifu. The Plutonium-238 Radioisotope Thermoelectric Generator in the Deep Space Exploration. Journal of Deep Space Exploration, 2020, 7(1): 61‒72 https://doi.org/10.15982/j.issn.2095-7777.2020.20191129001

References

[1] 吴伟仁,王倩,任保国,等. 放射性同位素热源/电源在航天任务中的应用[J]. 航天器工程,2013,22(2):1-6
WU W R,WANG Q,REN B G,et al. Application of RHU/RTG in space missions[J]. Spacecraft Engineering,2013,22(2):1-6
[2] 高敏,张景韶,ROWE D M. 温差电转换及其应用[M]. 北京:兵器工业出版社,1996.
[3] HAMMEL T E,BENNETT R,OTTING W,et al. Multi-Mission Radioisotope Thermoelectric Generator(MMRTG)and performance prediction model[C]//7th International Energy Conversion Engineering Coference. Denver,Colorado:[s.n.],2009.
[4] CAILLAT T,HUANG C. K,CHENG B,et al. Advanced thermoelectric materials for radioisotope thermoelectric generators[C]//25th Symposium on Space Nuclear Power Albuquerque. NM:[s.n.],2008.
[5] SCHIFER N,ORITI S. Advanced stirling convertor testing at GRC[R]. USA:Thermal Energy Conversion Branch NASA Glenn Research Center,2013.
[6] LEWANDOWSKI E J,SCHREIBER G J,ORITI S M. Design of a facility to test the advanced stirling radioisotope generator engineering Unit[R]. USA:NASA,2010.
[7] O’BRIEN R C. Radioisotope and nuclear technologies for space exploration[D]. UK:Physics Research In the Department of Physics Astronomy University of Leicester,2010.
[8] 崔萍,李歆,张楠,等. 前苏联和俄罗斯同位素温差发电器发展状况[J]. 电源技术,2004,28(12):803-806
CUI P,LI X,ZHANG N,et al. The development of radioisotope thermoelectric generator in USSR & Russia[J]. Chinese Journal of Power Sources,2004,28(12):803-806
[9] 肖伦. 放射性同位素技术[M]. 北京:原子能出版社,2000.
[10] 孙佳慧. 同位素核能源的空间应用前景分析[J]. 电源技术,2014,38(2):401-404
SUN J H. Prospect of radioisotope heating unit in space applications[J]. Chinese Journal of Power Sources,2014,38(2):401-404
[11] 孙树正. 放射源的制备与应用[M]. 北京:原子能出版社,1990.
[12] KENT R A. LASL fabrication flowsheet for gphs fuel pellet:LA-7972-MS[R]. [S.l.]:LA,1979.
[13] KUTTY T R G,KHAN K B,HEGDE P V,et al. Densification behaviour and sintering kinetics of PuO2 pellets[J]. Journal of Nuclear Materials,2001,297:120-128
[14] LANGE R G,CARROLL W P. Review of recent advances of radioisotope power systems[J]. Energy Conversion and Management,2008,49:393-401
[15] NASA. Cassini RTG program final technical report:RR18[R]. USA:NASA,1998.
[16] LIU C T,INOUYE H,SCHAFFHAUSER A C. Effect of thorium additions on metallurgical and mechanical properties of Ir-0.3 percent W alloys[J]. Metallurgical Transactions,1981,12A(6):993
[17] FRANCO-FERREIRA E A,MOYER M W,REIMUS M A H,et al. Characterization of Cassini GPHS fueld clad production girth welds:ORNL/TM-2000/84[R]. [S.l.]:Engineering Technology Division,2000.
[18] ULRICH G B.The metallurgical integrity of the frit vent assembly diffusion bond: Y/DV-1321[R]. [S.l.]:Y/DV,1994.
[19] Ulrich G B. Examination of frit vent from sixty watt heat source simulant fueled clad vent set: Y/DV-1393[R]. [S.l.]:Y/DV,1995.
[20] JOHNSON E W. Current helium venting technology for 238PuO2 heat source: LM-3625-OP[R]. USA:[s.n.],1991.
[21] 张建中,任保国,王泽深,等. 放射性同位素温差发电器在深空探测中的应用[J]. 宇航学报,2008,29(2):644-647
ZHANG J Z,REN B G,WANG Z S,et al. Radioisotope thermoelectric generators in deep space exploration[J]. Journal of Astronautics,2008,29(2):644-647
[22] 张琪昊,柏胜强,陈立东. 热电发电器件与应用技术:现状、挑战与展望[J]. 无机材料学报,1997,34(3):279-293
ZHANG Q H,BAI S Q,CHEN L D. Technologies and applications of thermoelectric devices:current status,challenges and prospects[J]. Journal of Inorganic Materials,1997,34(3):279-293
[23] 谌礼群. Bi2Te3基热电模组钎焊连接及工艺优化研究[D]. 杭州:浙江大学,2017.
[24] LIAO C N,LEE C H,CHEN W J. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper[J]. Electrochem. Solid-state Lett.,2007,10(9):23-25
[25] FENG S P,CHANG Y H,YANG J,et al. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials[J]. Phys,Chem. Chem.Phys.,2013,15(18):6757-6762
[26] LIN Y C,YANG C L,HUANG J Y,et al. Low-temperature bonding of Bi0.5Sb1.5Te3 thermoelectric material with Cu electrodes using a thin-film In interlayer[J]. Metall. Mater.Trans. A,2016,47(9):4767-4776
[27] 夏海洋. PbTe基热电电极接头界面扩散与反应及电极材料优化[D]. 北京:清华大学,2015.
[28] SINGH A,BHATTACHARYA S,THINAHARAN C,et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85((AgSbTe2)0.15(GeTe)0.85)[J]. J.Phys.D:Appl.Phys.,2008,42(1):015502-1-6
[29] WEINSTEIN D,MLAVSKY A I. Bonding of lead telluride to pure iron electrodes[J]. Rev.Sci.Instrum.,1962,33(10):1119-1120
[30] LEAVITT F A,MCCOY J W,MARUDHACHALAM P,et al. Segmented thermoelectric module with bonded legs[P]. US Patent,2012/0103381 A1,2012.
[31] HASEZAKI K,TSUKUDA H,YAMADA A,et al. Thermoelectric semiconductor and electrode- fabrication and evaluation of SiGe/electrode[C]//XVI International Conference on Thermoelectrics. [S.l.]:IEEE,2002.
[32] 杨小燕. p型硅锗合金热电材料与元件的制备及性能研究[D]. 北京:中国科学院大学,2016.
[33] LIN J S,TANIHATA K,MIYAMOTO Y,et al. Microstructure and property of(Si-MoSi2)/SiGe thermoelectric convertor unit[J]. Functionally Graded Materials,1997(4):599-604
[34] LIN J,MIYAMOTO Y. One-step sintering of SiGe thermoelectric conversion unit and its electrodes[J]. Journal of Materials Research,2000,15(3):647-652
[35] 蔡善钰. 空间同位素发电体系的应用现状与展望[J]. 核科学与工程,1994(4):373-379
[36] 侯欣宾,王立. 美国空间同位素能源装置发展现状[J]. 航天器工程,2007,16(2):41-49
HOU X B,WANG L. Introduction of US space radioisotope power systems[J]. Spacecraft Engineering,2007,16(2):41-49
[37] CAILLAT T,SAKAMOTO J,JEWELL A,et al. Status of skutterrudite-based segmented thermoelectric technology components development at JPL[C]//23rd Symposium on Space Nuclear Power and Propulsion STAIF. USA:[s.n.],2006.
[38] CULL T A,GEORGE T G,PAVONE D. General Purpose Heat Source development verification test program:explosion overpressure test series: LA-10697-MS[R].USA:NASA,1986.
[39] SNOW E C. Safety test NO.S-6,launch pad abort sequential test phase Ⅱ:solid propellant fire:LA-6034-MS[R]. USA:Los Alamos National Laboratory,1975.
[40] GEORGE T G. General Purpose Heat Source safety verification test program:edge-on flyer plate tests:LA-10872-MS[R]. USA:Los Alamos National Laboratory,1987.
[41] GEORGE T G,TATE R E,AXLER K M. General Purpose development safety verification test program:bullet/fragment test series:LA-1036-MS[R].USA:NASA,1985.
[42] 胡文军,陈永红,陈军红,等. 空间核动力源的安全性研究进展[J]. 深空探测学报,2017,4(5):453-465
HU W J,CHEN Y H,CHEN J H,et al. Advances of safety research on nuclear space power sources[J]. Journal of Deep Space Exploration,2017,4(5):453-465
[43] PETERSON D E,FRANTZ C E. Reentry thermal testing of a General Purpose Heat Source Fueled Clad:LA-9227[R].USA:NASA,1982.
[44] GEORGE T G,PAVONE D. General-Purpose Heat Source safety verification test series:SVT-11 through SVT-13:LA-10710-MS[R]. USA:NASA,1986.
[45] GRIGSBY C O. Comparison of General Purpose Heat Source testing with the ANSI N43.6-1997(R 1989)sealed source standard:LA-UR-98[R].USA:NASA,1998.
[46] TATE R E,LAND C C. Environmental safety analysis tests on the light weight radioisotope heater unit(LWRHU):LANL[R]. USA:NASA,1985.
[47] BENNETT G L,LOMBARDO J J,HEMLER R J,et al. Mission of daring:the General-Purpose Heat Source Radioisotope thermoelectric generator[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). San Diego,California:IECEC,2006.
[48] BENNETT G L,HEMLER R G. Development and use of the galileo and ulysses power sources[J]. Space Technology,1995,15(3):157-174
[49] NASA. Final report for the General Purpose Heat Source-radioisotope thermoelectric generator program:FESP-7209[R]. USA:NASA,1991.
[50] HAMMEL T E,BENNETT R,KEYSER S,et al. Multi-Mission Radioisotope Thermoelectric Generator(MMRTG)performance data and application to life modeling[C]//11th International Energy Conversion Engineering Conference. San Jose,CA:[s.n.],2013.
[51] OTTAM G K,HERSMAN C B. The Pluto-new Horizons RTG and power system early mission performance[C]//4th International Energy Conversion and Engineering Conference. San Diego,California:[s.n.],2006.
[52] COCKFIELD R D. Preparation of RTG F8 for the pluto New Horizons mission[C]//4th International Energy Conversion and Engineering Conference. San Diego,California:[s.n.],2006.
[53] ROSENBERG K E,JOHNSON S G. Assembly and testing of a radioisotope power system for the New Horizons spacecraft[C]//AIAA 4th International Energy Conversion Engineering Conference and Exhibit(IECEC). [S.l.]:AIAA,2006.
[54] GRIFFIN C D. Vibration testing of pluto New Horizons radioisotope thermoelectric generator[C]//4th International Energy Conversion Engineering Conference. San Diego,California:[s.n.],2006.
PDF(1385 KB)

Accesses

Citations

Detail

Sections
Recommended

/