Development and Trend of Artificial Intelligent in Deep Space Exploration

YU Dengyun1, ZHANG Zhe2, PAN Binfeng3, LIU Chuankai4, DING Liang5, ZHU Jihong3, GAO Haibo5, LIU Jinguo6, CHEN Peng7

PDF(593 KB)
PDF(593 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (1) : 11-23. DOI: 10.15982/j.issn.2095-7777.2020.20190916001
Review

Development and Trend of Artificial Intelligent in Deep Space Exploration

  • YU Dengyun1, ZHANG Zhe2, PAN Binfeng3, LIU Chuankai4, DING Liang5, ZHU Jihong3, GAO Haibo5, LIU Jinguo6, CHEN Peng7
Author information +
History +

Abstract

Due to the long distance between the earth and the planetary and the extreme environment,artificial intelligence technology will be the focus in the future deep space exploration mission,particularly for the task of the lunar/planetary residence and the exploitation and utilization of planetary resources. Based on the retrospection of the development of the applications of artificial intelligence in deep space missions,several key technology fields for future artificial intelligence technology in deep space exploration activities are proposed.

Keywords

deep space exploration / planetary residence and resource exploitation / artificial intelligence / robot

Cite this article

Download citation ▾
YU Dengyun, ZHANG Zhe, PAN Binfeng, LIU Chuankai, DING Liang, ZHU Jihong, GAO Haibo, LIU Jinguo, CHEN Peng. Development and Trend of Artificial Intelligent in Deep Space Exploration. Journal of Deep Space Exploration, 2020, 7(1): 11‒23 https://doi.org/10.15982/j.issn.2095-7777.2020.20190916001

References

[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[2] 叶培建,邹乐洋,王大轶,等. 中国深空探测领域发展及展望[J]. 国际太空,2018,478(10):6-12
YE P J,ZOU L Y,WANG D T,et al. Development and prospect of Chinese deep space exploration[J]. Space International,2018,478(10):6-12
[3] 吴伟仁,王琼,唐玉华,等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报,2017,4(2):111-117
WU W R,WANG Q,TANG Y H,et al. Design of Chang'e-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration,2017,4(2):111-117
[4] 张嘉毅. NASA发布《国家太空探索活动报告》[J]. 科技中国,2018(11):102-102
ZHANG J Y. NASA released the national report on space exploration activities[J]. Science and Technology of China,2018(11):102-102
[5] 王霄,吴润生. 俄罗斯载人登月发展现状及趋势[J]. 国际太空,2018,479(11):46-51
WANG X,WU R S. Status and trend of Russian manned Moon landing[J]. Space International,2018,479(11):46-51
[6] 纪汉霖,黄嘉冬. 我国人工智能产业发展及应用研究[J]. 软件导刊,2019,18(3):40-44
JI H L,HUANG J D. The development and application of artificial intelligence industry in China[J]. Software Guide,2019,18(3):40-44
[7] 郭延宁,冯振,马广富,等. 行星车视觉导航与自主控制进展与展望[J]. 宇航学报,2018,39(11):1185-1196
GUO Y N,FENG Z,MA G F,et al. Advances and trends in visual navigation and autonomous control of a planetary rover[J]. Journal of Astronautics,2018,39(11):1185-1196
[8] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28
CUI P Y,XU R,ZHU S Y,et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica ET Astronautica Sinica,2014,35(1):13-28
[9] 程翔. 人工智能在航天领域中的应用[J]. 系统工程与电子技术,1989(3):1-9
CHENG X. Applications of artificial intelligence to aerospace[J]. Systems Engineering and Electronics,1989(3):1-9
[10] 徐振耀. 人工智能在航空航天领域中的应用[J]. 系统工程与电子技术,1993(3):49-53
XU Z Y. Applications of AI to aerospace[J]. Systems Engineering and Electronics,1993(3):49-53
[11] 郭凤英,何洪庆. 人工智能技术在航天领域的应用[J]. 中国航天,1996(6):19-21
GUO F Y,HE H Q. Applications of AI technology to aerospace[J]. Aerospace China,1996(6):19-21
[12] 闫旭. 人工智能在航天领域中的应用探讨[J]. 数字通信世界,2019(4):221
YAN X. Discussion on the application of artificial intelligence in aerospace[J]. Digital Communication World,2019(4):221
[13] 杨维垣,张培志. 航天专家系统需求、现状、特点和发展战略的初步研究[J]. 航天器工程,1993(1):11-19
YANG W H,ZHANG P Z. A preliminary study on the requirements,current situation,characteristics and development strategy of space expert system[J]. Spacecraft Engineering,1993(1):11-19
[14] JPL. NASA/JPL Mars pathfinder[EB/OL].[2019-09-16]. http://marsprogram.jpl.nasa.Gov/MPF/.
[15] JPL. NASA/JPL Mars exploration rover mission[EB/OL].[2019-09-16]. http://marsrovers.jpl.nasa.gov/home/index.html.
[16] HELMICK D,ANGELOVA A,MATTHIES L. Terrain adaptive navigation for planetary rovers[J]. Journal of Field Robotics,2009,26(4):391-410
[17] WRIGHT J,HARTMAN F,COOPER B,et al. Driving on Mars with RSVP[J]. IEEE Robotics & Automation Magazine,2006,13(2):37-45
[18] SQUYRES S W,KNOLL A H,ARVIDSON R E,et al. Exploration of victoria crater by the Mars rover opportunity[J]. Science,2009,324:1058-1061
[19] SQUYRES S W,ARVIDSON R E,BELL J F,et al. The Spirit rover’s Athena science investigation at Gusev Crater,Mars[J]. Science,2004,305:794-799
[20] OJEDA L,BORENSTEIN J,WITUS G,et al. Terrain characterization and classification with a mobile robot[J]. Journal of Field Robotics,2006,23(2):103-122
[21] ANGELOVA A,MATTHIES L,HELMICK D,et al. Learning and prediction of slip from visual information[J]. Journal of Field Robotics,2007,24(3):205-231
[22] BROOKS C A,IAGNEMMA K. Self‐supervised terrain classification for planetary surface exploration rovers[J]. Journal of Field Robotics,2012,29(3):445-468
[23] THOMPSON D R,CABROL N A. Fast onboard texture analysis for planetary exploration[C]//IJCAI Workshop on Artificial Intelligence in Space.[S. l.]:IJCAI,2009.
[24] WAGSTAFF K L,THOMPSON D R,ABBEY W,et al. Smart,texture‐sensitive instrument classification for in situ rock and layer analysis[J]. Geophysical Research Letters,2013,40(16):4188-4193
[25] THOMPSON D R,ALLWOOD A C,BEKKER D L,et al. TextureCam:autonomous image analysis for astrobiology survey[C]//Lunar and Planetary Science Conference. Woodlands. Texas:[s. n.],2012.
[26] HAYDEN D S,CHIEN S,THOMPSON D R,et al. Using clustering and metric learning to improve science return of remote sensed imagery[J]. Acm Transactions on Intelligent Systems & Technology,2012,3(3):1-19
[27] CHIEN S,RABIDEAU G,TRAN D,et al. Activity-based scheduling of science campaigns for the rosetta orbiter[C]// International Conference on Artificial Intelligence. [S. l.]:AAAI Press,2015.
[28] JPL. NASA Mars rover can choose laser targets on its own[EB/OL].[2019-09-16]. https://mars.jpl.nasa.gov/news/1925/nasa-mars-rover-can-choose-laser-targets-on-its-own/.
[29] JPL. Mars Science Laboratory–Curiosity:NASA’s next Mars rover[EB/OL].[2019-09-16]. http://www.nasa.gov/mission_pages/msl/.
[30] SUN Z Z,JIA Y,ZHANG H. Technological advancements and promotion roles of Chang’e-3 lunar probe mission[J]. Sci China Tech Sci,2013,56:2702-2708
[31] ONO M,FUCHS T J,STEFFY A,et al. Risk-aware planetary rover operation:autonomous terrain classification and path planning[C]//2015 IEEE Aerospace Conference. Big Sky,MT:IEEE,2015:1-10.
[32] ROTHROCK B,KENNEDY R,CUNNINGHAM C,et al. Spoc:deep learning-based terrain classification for mars rover missions[C]//AIAA SPACE 2016. [S. l.]:AIAA,2016:5539.
[33] GAUDET B,FURFARO R. Robust spacecraft hovering near small bodies in environments with unknown dynamics using reinforcement learning[C]// AIAA/AAS,Astrodynamics Specialist Conference.[S. l.]:AIAA,2013.
[34] GAUDET B,FURFARO R. Adaptive pinpoint and fuel efficient mars landing using reinforcement learning[J]. IEEE/CAA Journal of Automatica Sinica,2014,1(4):397-411
[35] FURFARO R,WIBBEN D R,GAUDET R,et al. Terminal multiple surface sliding guidance for planetary landing:development,tuning and optimization via reinforcement learning[J]. The Journal of the Astronautical Sciences,2015,62(1):73-99
[36] FURFARO R,LINARES R. Waypoint-Based generalized ZEM/ZEV feedback guidance for planetary landing via a reinforcement learning approach[C]//3rd International Academy of Astronautics Conference on Dynamics and Control of Space Systems.Moscow,Russian Federation:[s. n.],2017.
[37] DING L,GAO H B,DENG Z Q,et al. Three-layer intelligence of planetary exploration wheeled mobile robots:Robint,virtint,and humint[J]. Science China Technological Sciences,2015,58(8):1299-1317
[38] CAMPBELL T,FURFARO R,LINARES R. A deep learning approach for optical autonomous planetary relative terrain navigation[C]//27th AAS/AIAA Spaceflight Mechanics Meeting.San Antonio,Texas:[s. n.],2017.
[39] FURFARO R,BLOISE I,ORLANDELLI M,et al. Deep learning for autonomous lunar landing[C]// AAS/AIAA Astrodynamics Specialist Conference.Snowbird,UT:AIAA,2018.
[40] WILKINSON M C,MEADE A J. Neural-network-inspired machine learning for autonomous lunar targeting[J]. Journal of Aerospace Information Systems,2015,11(7):458-466
[41] BOUKERCHA A,AL-TAMEEMI A,GRUMPE A,et al. Automatic crater recognition using machine learning with different features and their combination[C]// Lunar & Planetary Science Conference.[S. l.]:Lunar and Planetary Science Conference,2014.
[42] HECKE K V,DE CROON G C H E,HENNES D,et al. Self-supervised learning as an enabling technology for future space exploration robots:ISS experiments on monocular distance learning[J]. Acta Astronautica,2017,140:1-9
[43] IZZO D,WEISS N,SEIDL T. Constant-optic-flow lunar landing:optimality and guidance[J]. Journal of Guidance Control & Dynamics,2012,34(5):1383-1395
[44] SáNCHEZ-SáNCHEZ C,DARIO I. Real-time optimal control via deep neural networks:study on landing problems[J]. Journal of Guidance Control & Dynamics,2016,41(3):1-14
[45] IZZO D,SPRAGUE C,TAILOR D. Machine learning and evolutionary techniques in interplanetary trajectory design[M].Germany:Springer,2019.
[46] IZZO D,M?RTENS M,PAN B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics,2019,3(4):287-299
[47] ZHANG P,LIU X,ZHAO B,et al. Asteroid landing via onboard optimal guidance based on bidirectional extreme learning machine[C]// International Joint Conference on Neural Networks.[S. l.]:IEEE,2016.
[48] CHENG L,WANG Z,JIANG F,et al. Real-time optimal control for spacecraft orbit transfer via multi-scale deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems.[S. l.]:IEEE,2019.
[49] SHANG H,WU X,QIAO D,et al. Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning[J]. Aerospace Science and Technology,2018,79:570-579
[50] 俞一鹏. 脑机融合的混合智能系统:原型及行为学验证研究[D]. 杭州:浙江大学,2016.
YU Y P. Cyborg intelligent systems based on brain-machine integration:research on prototypes and behavioral verification[D]. Hangzhou:Zhejiang University,2016.
[51] 赵海亮. 融合人机协同的月球车路径规划[D]. 沈阳:东北大学,2012.
ZHAO H L. The research of lunar rover path planning with human-machine collabrative[D]. Shenyang:Northeastern University,2012.
[52] 吴伟仁,于登云,黄江川,等. 太阳系边际探测研究[J]. 中国科学:信息科学,2019,49(1):6-21
WU W R,YU D Y,HUANG J C,et al. Exploring the Solar system boundary[J]. SCIENCE CHINA Information Sciences,2019,49(1):6-21
[53] FREITAS R A,HEALY T J,LONG J E. Advanced automation for space missions[J]. Journal of the Astronautical Sciences,1982,1(1):1-11
[54] VOOSEN P. NASA to pay private space companies for moon rides[J]. Science,2018,262(6417):875-876
[55] National space exploration campaign report[EB/OL]. [2019-09-16]. https://www.nasa.gov/sites/default/files/atoms/files/nationalspaceexplorationcampaign.pdf.
[56] What is Artemis?[EB/OL].[2019-09-16]. https://www.nasa.gov/feature/what-is-artemis/.
[57] 周生东,王永生. 俄罗斯联邦2016-2025年航天计划基本内容[J]. 国际太空,2017(5):14-18
ZHOU S D,WANG Y S. Basic content of Russia federation space program 2016-2025[J]. Space International,2017(5):14-18
[58] 俄罗斯:执行载人登月任务,着手建造月球基地[EB/OL].[2019-09-16]. http://news.cnr.cn/gjxw/gnews/20190307/t20190307_524533372.shtml?from=groupmessage.
[59] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报,2018,5(4):78-85
YUAN Y,ZHAO C,HU Z Y. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration,2018,5(4):78-85
PDF(593 KB)

Accesses

Citations

Detail

Sections
Recommended

/