Introduction to Main Application Goals of Five-hundred-meter Aperture Spherical radio Telescope

YAN Jun1,2, ZHANG Haiyan1,2

Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (2) : 128-135. DOI: 10.15982/j.issn.2095-7777.2020.20190618003
Topic: FAST Application Goal and Associated Technology

Introduction to Main Application Goals of Five-hundred-meter Aperture Spherical radio Telescope

  • YAN Jun1,2, ZHANG Haiyan1,2
Author information +
History +

Abstract

The main structure of Five-hundred-meter Aperture Spherical radio Telescope(FAST)has been completed. Till now, more than 100 new pulsars have been detected by FAST during the commissioning and test observation stage, and the project passed the national review in January 2020. Being the largest and most sensitive single-dish radio telescope, FAST will enable scientists to jump-start many science cases. Meanwhile, FAST have several application goals described in this paper. For instance, in deep space exploration, FAST will improve the ability of space measurement and control to the edge of the Solar System. Moreover, FAST will increase the measurement accuracy of the time of arrival for the pulsar to 30 ns and develop the most accurate pulsar timing array, which will work for autonomous navigation. FAST could be the receiving system of the incoherent scattering radar, providing the ground-based observation with high resolution and efficiency. By carrying out microware survey to detect weak space signals, FAST might work for the Search for Extra Terrestrial Intelligence(SETI)and national security. After the formal operation, FAST will make significant contributions to these important application goals.

Keywords

radio telescope / FAST / application goals

Cite this article

Download citation ▾
YAN Jun, ZHANG Haiyan. Introduction to Main Application Goals of Five-hundred-meter Aperture Spherical radio Telescope. Journal of Deep Space Exploration, 2020, 7(2): 128‒135 https://doi.org/10.15982/j.issn.2095-7777.2020.20190618003

References

[1] 吴盛殷. 一个跨世纪工程:新一代射电望远镜计划[J]. 天文学进展,1995(2):164-172
[2] VAN ARDENNE A. Concepts of the square kilometre array: toward the new generation radio telescopes[C]//IEEE Antennas-and-Propagation-Society International Symposium. [S.l]:IEEE,2000.
[3] NAN R D,LI D,JIN C,et al. The Five-hundred Aperture Spherical radio Telescope(FAST)project[J]. IJMPD,2011,20(6):989-1024
[4] 邱玉海. 具有主动主反射面的巨型球面射电望远镜[J]. 天体物理学报,1998(2):7-10
[5] PENG B,JIN C J,WANG Q M,et al. Preparatory study for constructing fast,the world's largest single dish[J]. Proceedings of the IEEE,2009,97(8):1391-1396
[6] NAN R D,LI D. The Five-hundred-meter Aperture Spherical radio Telescope(FAST)project[J]. IOP Conference Series:Materials Science and Engineering,2013,44:12022-1
[7] LI D,NAN R D,PAN Z C. The Five-hundred-meter Aperture Spherical radio Telescope project and its early science opportunities[J]. IAUS,2013,291:325-330
[8] YUE Y L,LI D,NAN R D. FAST low frequency pulsar survey[J]. Proceedings of the International Astronomical Union,2013,291:571-577
[9] 南仁东,李会贤. FAST的进展—科学、技术与设备[J]. 中国科学,2014,44(10):1063-1074
NAN R D,LI H X. Progress of FAST in science,technique and instrument[J]. Scientia Sinica Physica,Mechanica & Astronomica,2014,44(10):1063-1074
[10] NAN R D,ZHANG H Y,ZHANG Y,et al. FAST construction progress[J]. Acta Astronomica Sinica,2016,57(6):623-630
[11] NAN R D,ZHANG H Y. Super bowl[J]. Nature Astronomy,2017(1):12-14
[12] 南仁东,姜鹏. 500 m口径球面射电望远镜(FAST)[J]. 机械工程学报,2017,53(17):1-3
[13] 姜鹏,王启明,岳友岭,等. FAST索网疲劳评估及高疲劳性能钢索研制[J]. 工程力学,2015,32(9):243-249
JIANG P,WANG Q M,YUE Y L,et al. Fatigue proformance evaluation of Fast Cable-Net Structures and development of a new type of steel cable system with high fatigue resistance[J]. Engineering Mechanics,2015,32(9):243-249
[14] ZHANG H Y,WU M C,YUE Y L,et al. EMC design for actuators in the FAST reflector[J]. RAA,2018,18(4):123-128
[15] JIANG P,YUE Y L,GAN H Q,et al. Commissioning progress of the FAST[J]. Science China Physics,Mechanics & Astronomy,2019,62(5):3-24
[16] QIAN L,PAN Z C,LI D,et al. The first pulsar discovered by FAST[J]. Science China Physics,Mechanics & Astronomy,2019,62(5):71-74
[17] WANG H F,ZHU W W,GUO P,et al. Pulsar candidate selection using ensemble networks for FAST drift-scan survey[J]. Science China Physics,Mechanics & Astronomy,2019,62(5):61-70
[18] SMITH S L,DUNNING A,SMART K W,et al. Performance validation of the 19-element multibeam feed for the Five-hundred-metre Aperture Spherical radio Telescope[C]//IEEE Antennas and Propagation Society International Symposium. [S.l.]:IEEE,2017.
[19] LI Y L,ZHOU Q H. Velocity and orbital characteristics of micrometeors observed by the Arecibo 430 MHz incoherent scatter radar[J]. Monthly Notices of the Royal Astronomical Society,2019,486(3):3517-3523
[20] KILGORE,DE WITT D. The exploration of space[J]. Science,2017,358(6369):1392-1393
[21] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报,2014(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014(1):5-17
[22] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报,2019,6(5):405-416
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
[23] ZHANG H Y,CHEN R R,JIN Ch J,et al. Proposed VLBI observations in the FAST commissioning stage[C]// IAU General Assembly. [S.l.]:IAU,2018.
[24] ZHENG W M. The recent progress of Chinese VLBI network[C]//IAU General Assembly,Meeting. [S.l.]:IAU,2015.
[25] 刘庆会,吴亚军. 高精度VLBI技术在深空探测中的应用[J]. 深空探测学报,2015,2(3):208-212
LIU Q H,WU Y J. Application of high precision VLBI technology in deep space exploration[J]. Journal of Deep Space Exploration,2015,2(3):208-212
[26] BAIRD D T. Mars exploration rovers entry,descent,and landing navigation[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. [S.l.]:AIAA,2004.
[27] 杨廷高,仲崇霞. 毫秒脉冲星计时观测进展[J]. 天文学进展,2005,1:1-9
YANG T G,ZHONG C X. Progress on millisecond pulsar timing observations[J]. Progress in Astronomy,2005,1:1-9
[28] ARZOUMANIAN Z,BRAZIER A,BURKE-SPOLAOR S,et al. The nanograv 11-year data set:high-precision timing of 45 millisecond pulsars[J]. Astrophysical Journal Supplement Series,2018,235(2):37-47
[29] LIU K,VERBIEST J P W,KRAMER M,et al. Prospects for high-precision pulsar timing[J]. Monthly Notices of the Royal Astronomical Society,2011,417(4):2916-2926
[30] LAZIO T,JOSEPH W,BHASKARAN S,et al. Solar system ephemerides,pulsar timing,gravitational waves,& navigation[C]// Pulsar Astrophysics the Next Fifty Years,Proceedings of the International Astronomical Union,IAU Symposium. [S.l.]:IAU,2018.
[31] 李豪. 脉冲星自主天文导航概述[J]. 光学与光电技术,2014(4):78-81
LI H. Pulsar autonomous celestial navigation[J]. Optics & Optoelectronic Technology,2014(4):78-81
[32] 郑世界,葛明玉,韩大炜,等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学(物理学力学天文学),2017,47(9):116-124
ZHEGN S J,GE M Y,HAN D W,et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia China Physica,Mechanica & Astronomica,2017,47(9):116-124
[33] 张大鹏,王奕迪,姜坤,等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报,2018,39(4):411-417
ZHANG D P,WANG Y D,JIANG K,et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics,2018,39(4):411-417
[34] 贾淑梅,黄跃,马想,等. 硬X射线调制望远镜卫星科学观测应用初步评价[J]. 航天器工程,2018,27(5):168-174
JIA S M,HUANG Y,MA X,et al. Preliminary evaluation for scientific observations application of HXMT satellite[J]. Spacecraft Engineering,2018,27(5):168-174
[35] HOBBS G,DAI S,MANCHESTER R N,et al. The role of FAST in pulsar timing arrays[J]. Research in Astronomy and Astrophysics,2019,19(2):20-29
[36] 黄朝辉,袁韦华,王霄,等. 子午工程专题[J]. 现代物理知识,2012,24(5):4-28
[37] ILKKA I V,BJ?RN G,ANITA A,et al. Electron energy spectrum and auroral power estimation from incoherent scatter radar measurements[J]. Journal of Geophysical Research,Space Physics,2018:6865-6887
[38] 丁宗华,代连东,杨嵩,等. 曲靖非相干散射雷达功率谱的初步观测与分析[J]. 地球物理学进展,2018(6):2204-2210
DING Z H,DAI L D,YANG S,et al. Preliminary measurement and analysis of the power spectra by the Qujing incoherent scatter radar[J]. Progress in Geophysics,2018(6):2204-2210
[39] PRICE D,MACMAHON D,LEBOFSKA M,et al. The breakthrough listen search for intelligent life:wide-bandwidth digital instrumentation for the csiro parkes 64-m telescope[J]. PASA,2018,35:e041
[40] ZHANG H Y,WU M C,YUE Y L,et al. RFI mitigation of FAST:challenge & solution[C]// 2019 URSI Asia-Pacific Radio Science Conference(AP-RASC). [S.l.]:URSI,2019.
[41] SIEMION A P V,ARMOUR W,CHENNAMANGAlAM J,et al. Commensal searches for extraterrestrial intelligence with arecibo observatory and the green bank telescope[C]//URSI GASS. [S.l.]:URSI,2014.
[42] WANDEL A. How far are extraterrestrial Life and intelligence after Kepler?[J]. Acta Astronautica,2016,137:498-503

Accesses

Citations

Detail

Sections
Recommended

/