Key Technologies for Space Science Gravitational Wave Detection

WU Shufan, WANG Nan, GONG Deren

Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (2) : 118-127. DOI: 10.15982/j.issn.2095-7777.2020.20190402001
Review
Review

Key Technologies for Space Science Gravitational Wave Detection

  • WU Shufan, WANG Nan, GONG Deren
Author information +
History +

Abstract

The concept of gravitational waves is first introduced,describing the causes of gravitational waves. Typical science missions of ground and space gravitational wave detections are summarized,elaborating their major differences. Then the key technologies for space science gravitational wave detection are investigated,and its future development trends are analyzed. Finally,it is pointed out that the implementation of the gravitational wave detection task will also play an active role in the fields of inertial navigation,earth science,high-precision satellite platform construction and other applications,and it is of great significance to improve the technical level of space science and deep space exploration in China.

Keywords

gravitational waves / scientific exploration missions / drag free control / high precision measurement / long baseline formation

Cite this article

Download citation ▾
WU Shufan, WANG Nan, GONG Deren. Key Technologies for Space Science Gravitational Wave Detection. Journal of Deep Space Exploration, 2020, 7(2): 118‒127 https://doi.org/10.15982/j.issn.2095-7777.2020.20190402001

References

[1] 郭宗宽,蔡荣根,张元仲. 引力波探测:引力波天文学的新时代[J]. 科技导报,2016,34(3):30-33
GUO Z K,CAI R G,ZHANG Y Z. Gravitational wave detection:a new era in gravitational wave astronomy[J]. Journal of Science and Technology,2016,34(3):30-33
[2] 张永合. 面向星星跟踪测量系统的无拖曳航天器编队技术研究[D]. 上海:中国科学院上海微系统与信息技术研究所,2016.
ZHANG Y H. Research on drag-free spacecrafts formation flying Technique applied for spacecraft to spacecraft tracking measurement system[D]. Shanghai:Shanghai Institute of Microsystems and Information Technology,Chinese Academy of Sciences,2016.
[3] SHIBATA M,TANIGUCHI K,OKAWA H,et al. Coalescence of binary neutron stars in a scalar-tensor theory of gravity[J]. Physical Review D,2014,89(8):084005-084022
[4] BARAUSSE E,PALENZUELA C,PONCE M,et al. Neutron-star mergers in scalar-tensor theories of gravity[J]. Physical Review D,2013,87(8):081506-081511
[5] THORNE K. The science of interstellar[M]. New York,London:W. W. Norton & Company,2014.
[6] 罗子人,白姗,边星,等. 空间激光干涉引力波探测[J]. 力学进展,2010,43(4):415-447
LUO Z R,BAI S,BIAN X,et al. Space laser interference detection of gravitational waves[J]. Progress in Mechanics,2010,43(4):415-447
[7] RILES K. Gravitational waves:sources,detectors and searches[J]. Progress in Particle and Nuclear Physics,2013(68):1-54
[8] FOIT V F,KLEBAN M. Testing quantum black holes with gravitational waves[J]. Classical and Quantum Gravity,2019,36(3):035006
[9] CHIARA C,FIGUEROA D G. Cosmological backgrounds of gravitational waves[J]. Classical and Quantum Gravity,2018,35(16):163001
[10] DOOLEY K L. GEO 600 and the GEO-HF upgrade program:successes and challenges[J]. Classical and Quantum Gravity,2016,33(7):075009
[11] SOMIYA K,COLLABORATION L. Detector configuration of LCGT—the Japanese Cryogenic Gravitational-wave Detector[J]. Classical & Quantum Gravity,2011,29(12):124007-124018
[12] ASO Y,MICHIMURA Y,SOMIYA K,et al. Interferometer design of the KAGRA gravitational wave detector[J]. Phys Rev D,2013,88:043007
[13] ACERNESE F. Virgo collaboration[J]. Class. Quantum Grav.,2015,32:024001
[14] ABBOTT B P. LIGO Scientific collaboration and virgo collaboration[J]. Phys. Rev. Letters,2017,119:161101
[15] ABBOTT B P,ABBOTT R,ABBOTT T D,et al. Gravitational waves and gamma-rays from a binary neutron star merger:GW170817 and GRB 170817A[J]. The Astrophysical Journal,2017,848(2):L13
[16] PINARD L,MICHEL C,SASSOLAS B,et al. Mirrors used in the LIGO interferometers for first detection of gravitational waves[J]. Appl Opt,2017,56(4):C11
[17] GIULICCHI L,WU S F, FENAL T. Attitude and orbit control systems for the LISA pathfinder mission[J]. Aerospace Science and Technology,2013,24:283-294
[18] MITSURU M. Space gravitational wave detector DECIGO/pre-DECIGO[C]//International Conference on Space Optics. Biarritz,France:[s.n.],2016.
[19] 刘志远. “天琴计划”太空中捕捉宇宙涟漪[J]. 科技导报,2016,34(3):53-54
LIU Z Y. Tianqin project captures cosmic ripples in space[J]. Science and Technology Herald,2016,34(3):53-54
[20] 闫蓓,安瑞,邹文娟. 对话吴岳良:从时空的涟漪到太极计划[J]. 科学通报,2016(14):1499-1501
YAN B,AN R,ZOU W J. Dialogue wu yueliang:from space-time ripples to taiji project[J]. Science Bulletin,,2016(14):1499-1501
[21] WALTER F,ALEXANDER S,SAMIR B,et al. Closed loop performance and limitations of the LISA pathfinder drag-free control system[C]//AIAA Guidance,Navigation and Control Conference and Exhibit. Hilton Head,South Carolina:AIAA,2007.
[22] WU S F,LUISELLA G. Attitude stabilization of lisa pathfinder spacecraft using colloidal micro-newton thrusters[C]//AIAA Guidance,Navigation,and Control Conference,2011.
[23] WU S F,DENIS F. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica,2008(62):668-682
[24] 李永贵,张晓莉,李英民. 激光干涉仪引力波探测器中的光学技术进展[J]. 中国科学:物理学 力学 天文学,2017(1):23-37
LI Y G,ZHANG X L,LI Y M. Advances in optical techniques for gravitational wave detectors with laser interferometers[J]. Science in China:Physics,Mechanics and Astronomy,2017(1):23-37
[25] LI Y Q,LUO Z R,LIU H S,et al. Laser interfermeter for space gravitational waves detection[J]. Microgravity Science and Technology,2018(30):817-829
[26] 方乐. 静电扭摆系统的实验验证及其在电荷管理应用中的初步研究[D]. 武汉:华中科技大学. 2015.
FANG L. The experiment verification of electrostatic torsion pendulum and its primary investigation of the application in charge management[D]. Wuhan:Huazhong University of Science and Technology, 2015.
[27] WU S F,LUISELLA G. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures American[C]//AIAA Guidance,Navigation,and Control Conference. [S.l.]:AIAA, 2010.
[28] 罗子人,张敏,靳刚,等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报,2020,7(1):3-10
LUO Z R,ZHANG M,JIN G,et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration,2020,7(1):3-10

Accesses

Citations

Detail

Sections
Recommended

/