Research on Optimal Deorbit Guidance Method for Mars Exploration

TENG Rui1, HAN Hongwei2,3, QIAO Dong2,3

PDF(831 KB)
PDF(831 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (2) : 184-190. DOI: 10.15982/j.issn.2095-7777.2020.20190315001
Article
Article

Research on Optimal Deorbit Guidance Method for Mars Exploration

  • TENG Rui1, HAN Hongwei2,3, QIAO Dong2,3
Author information +
History +

Abstract

The EDL phases are of great importance in Mars exploration mission,while before which the deorbit braking is a key maneuver to ensure the smooth execution of the atmospheric entry process. Aiming at the problem of deorbit maneuver before Mars entry,a burn-coast optimal deorbit guidance method is presented. Based on the local linearization of the state equation,the analytical forms of state and costate variables are obtained. The solution equations of the optimal burn-coast deorbit guidance law are given through derivation of the necessary conditions for optimal deorbit maneuver. The simulation results show that the proposed guidance strategy has good robustness on the premise of guaranteeing optimality and guidance accuracy,providing theoretical reference for the future deorbit maneuver in Mars exploration.

Keywords

Mars exploration / deorbit / optimal guidance / burn-coast

Cite this article

Download citation ▾
TENG Rui, HAN Hongwei, QIAO Dong. Research on Optimal Deorbit Guidance Method for Mars Exploration. Journal of Deep Space Exploration, 2020, 7(2): 184‒190 https://doi.org/10.15982/j.issn.2095-7777.2020.20190315001

References

[1] BALDWIN M C,LU P. Optimal deorbit guidance[J]. Journal of Guidance,Control,and Dynamics,2012,35(1):93-103
[2] BALDWIN M C. Autonomous optimal deorbit guidance[D]. Iowa:Iowa State University,2010.
[3] GILLESPIE E M,SAHA K B. Crew return vehicle(CRV)deorbit opportunities[C]//Proc of AIAA Modeling and Simulation Technologies Conference. USA:AIAA,2003.
[4] PENZO P A. Orbit / deorbit analysis for a Mars rover and sample return mission[J]. Journal of Guidance,Control,and Dynamics,1990,27(4):425-432
[5] TUMINO G,ANGELINO E,LELEU F,et al. The IXV project the ESA re-entry system and technologies demonstrator paving the way to European autonomous space transportation and exploration endeavours:IAC-08-D2[R]. Glasgow,UK:European Space Agency,2008.
[6] GALMAN B A. Minimum energy deorbit[J]. Journal of Spacecraft and Rockets,1966,3(7):1030-1033
[7] GALMAN B A. Minimum range-sensitivity deorbit[J]. Journal of Spacecraft and Rockets,1971,8(2):189-190
[8] SUN F. Solution of the optimal two-impulse deorbit problem with the second impulse at the entry point[J]. Acta Astronautica,1982,9(1):1-13
[9] 陈洪波,杨涤. 升力式再入飞行器离轨制动研究[J]. 飞行力学,2006,24(2):35-39
CHEN H B,YANG D. De-orbit operations study of lifting reentry vehicle[J]. Flight Dynamics,2006,24(2):35-39
[10] BUSEMANN A,VINH N X. Optimum constrained disorbit by multiple impulses[J]. Journal of Optimization Theory and Applications,1968,2(1):40-64
[11] 汤国建. 载人飞船返回再入轨道和制导导航控制系统的研究与设计[D]. 长沙:国防科技大学,2000.
[12] LU P,GRIFFIN B J. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance,Control,and Dynamics,2008,31(6):1656-1664
[13] ZHONG R,ZHU Z. Optimal current switch ing control of electrodynamic tethers for fast deorbit[J]. Journal of Guidance,Control,and Dynamics,2014,37:1501-1511
[14] BRYSON A E,HO Y C. Applied optimal control:optimization,estimation,and control[M]. USA: Halsted Press,1975.
[15] MORé J J. The Levenberg-marquardt algorithm:Implementation and theory[J]. Lecture Notes in Mathematics,1977,630:105-116
PDF(831 KB)

Accesses

Citations

Detail

Sections
Recommended

/