An Attitude Estimation Method Based on LIE Group Representation for Deep Space Probe

XU Hao1,2, PEI Fujun1,2, JIANG Ning1,2

PDF(653 KB)
PDF(653 KB)
Journal of Deep Space Exploration ›› 2020, Vol. 7 ›› Issue (1) : 102-108. DOI: 10.15982/j.issn.2095-7777.2020.20171117002
Article

An Attitude Estimation Method Based on LIE Group Representation for Deep Space Probe

  • XU Hao1,2, PEI Fujun1,2, JIANG Ning1,2
Author information +
History +

Abstract

A novel algorithm for attitude estimation of deep spacecraft based on star sensor is proposed. The Lie group is used to describe the attitude,which avoids the non-uniqueness and complex calculation of the quaternion conversion into the attitude matrix. A description of the motion model based on star sensor and the kinematics model of space rigid body in Lie group is given. A method based on Lie group is proposed to determine the dynamic attitude of deep spacecraft. The linearization model solves the errors generated by the traditional nonlinear model in the filtering process,and eliminates the steps of converting the quaternion into the attitude matrix and reduces the computational complexity. In the simulation,the proposed method is compared with the traditional quaternion attitude determination algorithm. The results prove that the algorithm has better stability and accuracy.

Keywords

deep space probe / star sensor / attitude estimation / LIE group filter

Cite this article

Download citation ▾
XU Hao, PEI Fujun, JIANG Ning. An Attitude Estimation Method Based on LIE Group Representation for Deep Space Probe. Journal of Deep Space Exploration, 2020, 7(1): 102‒108 https://doi.org/10.15982/j.issn.2095-7777.2020.20171117002

References

[1] BRAUN R D,MANNING R M. Mars exploration entry,descent and landing challeges[C]// Aerospace Conference. [S. l.]:IEEE,2006:18 .
[2] GARCíA-LLAMA E,IVANOV M C,WINSKI R G,et al. Mars science laboratory entry guidance improvements study for the Mars 2018 mission[C]// Aerospace Conference. [S. l.]: IEEE,2012:1-11.
[3] 崔平远,于正湜,朱圣英. 火星进入段自主导航技术研究现状与展望[J]. 宇航学报,2013,34(4):447-456
CUI P Y,YU Z S,ZHU S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics,2013,34(4):447-456
[4] 于正湜,崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报,2016,3(4):345-355
YU Z S,CUI P Y. Research status and developing trend of the autonomous navigation,guidance,and control for planetary landing[J]. Journal of Deep Space Exploration,2016,3(4):345-355
[5] 刘垒,张路,郑辛,等. 星敏感器技术研究现状及发展趋势[J]. 红外与激光工程,2007,36(s2):529-533
LIU L,ZHANG L,ZHENG X,et al. Current situation and development trends of star sensor technology[J]. Infrared and Laser Engineering,2007,36(s2):529-533
[6] 龚德铸,王艳宝,卢欣. 基于星敏感器的CCD47-20航天应用[J]. 空间控制技术与应用,2006(6):42-50
[7] YU-FENG L I,HAO Z H. Research of hyper accuracy subpixel subdivision location algorithm for star image[J]. Optical Technique,2005(5):1-9
[8] SHUSTER M D,S. D. O H Three-axis attitude determination from vector observations[J]. Journal of Guidance Control & Dynamics,2012,4(1):1-9
[9] MARKLEY F L. Attitude determination using vector observations and the singular value decomposition[J]. Journal of the Astronautical Sciences,1988,36(3):245-258
[10] BARITZHACK I Y,HARMAN R R. Optimized TRIAD algorithm for attitude determination[J]. Journal of Guidance Control & Dynamics,2012,20(1):208-211
[11] MARKLEY F L. Attitude determination from vector observations:a fast optimal matrix algorithm[J]. Journal of the Astronautical Sciences,1993,41(2):261-280
[12] LEFFERTS E J,MARKLEY F L,SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance Control & Dynamics,1982,5(4):536-542
[13] CHOUKROUN D,WEISS H,BAR-ITZHACK I Y,et al. Kalman filtering for matrix estimation[J]. ?IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):147-159
[14] SHUSTER M D. Kalman filtering of spacecraft attitude and the QUEST model[J]. Journal of the Astronautical Sciences,1990,38(3):377-393
[15] JULIER S J,UHLMANN J K,DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]// American Control Conference. [S. l.]:IEEE,2002.
[16] 理查得·摩雷,李泽湘,夏恩卡·萨思特里. 机器人操作的数学导论[M]. 北京:机械工业出版社,1998.
RICHARD M M,LI Z X,SHANKAR S. A mathematical introduction to robotic manipulation[M]. Beijing:China Machine Press,1998.
[17] BARRAU A,BONNABEL S. Intrinsic filtering on SO(3) with discrete-time observations[C]// Decision and Control. [S. l.]:IEEE,2013:3255-3260.
PDF(653 KB)

Accesses

Citations

Detail

Sections
Recommended

/