PDF(2016 KB)
Orbit Prediction and Dynamical Analysis of Phobos
- GAO Wutong1, XIE Pan2, YAN Jianguo3
Author information
+
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430070, China;
2. Shanghai Institute of Satellite Engineer, Shanghai, 201100, China;
3. State Key Laboratory of Information Engineering in Survey, Mapping and Remote Sensing, Wuhan University, Wuhan, 430070, China
Show less
History
+
Received |
Revised |
06 Aug 2019 |
01 Sep 2019 |
Issue Date |
|
20 May 2022 |
|
In this paper,numerical integration is used to calculate and predict the orbit of one of the Martian moons,Phobos. First,the considered force models,parameters and integration methods are introduced. Then the effect of different force models and parameters are analyzed by simulation,and a suggested model is given according to the analysis result. Finally,the difference in position and orbital elements between the proposed model and existing ephemeris is compared. The result shows the same order in magnitude in comparison with the difference of the ephemeris themselves,which proves the precision and reliability of the proposed model. The Phobos dynamical force models analysis and the orbit prediction will help to the exploration missions of Phobos.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] NASA. Solar system exploration[EB/OL].[2003(] 2019-8-6). http://solarsystem.nasa.gov/.
[2] WITASSE O,DUXBURY T,CHICARRO A,et al. Mars Express investigations of Phobos and Deimos[J]. Planetary and Space Science,2014(102):18-34.
[3] FUJIMOTO M,MIYAMOTO H,KURAMOTO K. JAXA's martian moons explortaion,mmx[J]. European Planetary Science Congress, 2017.
[4] NASA. NASA's Journey to Mars[EB/OL].[2014(] 2019-8-6).https://www.nasa.gov/content/nasas-journey-to-mars.
[5] JACOBSON R A.The orbits and masses of the martian satellites and the libration of Phobos[J]. Astronomical Journal,2010,139(2):668-679.
[6] KONOPLIV A S,YODER F C,STANDISH M E,et al. A global solution for the Mars static and seasonal gravity,Mars orientation, Phobos and Deimos masses,and Mars ephemeris[J]. Icarus,2006, 182(1):23-50.
[7] Insitute of Applied Astronomy Russian Academy Science. EPM2017 and EPM2017H[EB/OL].[2017-11-7(] 2019-8-6).http://iaaras.ru/en/dept/ephemeris/epm/2017/.
[8] Insitute of Applied Astronomy Russian Academy Science. Online ephemeris service[EB/OL].(2019-8-6). http://iaaras.ru/en/dept/ephemeris/online/.
[9] VISWANATHAN V,FIENGA A,GASTINEAU M. INPOP17a planetary ephemerides[EB/OL].[2017] (2019-8-6). https://ui.adsabs.harvard.edu/abs/2017NSTIM.108.V/abstract.
[10] Ephemerides of planets and natural satellites[EB/OL].(2019-8-6) http://nsdb.imcce.fr/multisat/nssreq4he.htm.
[11] PRINCE P J,DORMAND J R. High order embedded Runge-Kutta formulae[J]. Journal of Computational and Applied Mathematics, 1981,7(1):67-75.
[12] MONTENBRUCK O,GILL E. Satellite orbits:models,methods and alications[M]. Germany:Springer,2000.
[13] 李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995. LI J S. Satellite presion orbit determination[J]. Beijing:Chinese People's Liberation Army Publishing House,1995.
[14] GOOSSENS S,MATSUMOTO K. Lunar degree 2 potential Love number determination from satellite tracking data[J]. Geophisical Research Letters,2008,35(2):1-5.
[15] FOLKNER W M,WILLIAMS J G,BOGGS D H. The planetary and Lunar Ephemeris DE430 and DE431,JPL IPN Progress Report[R]. California:JPL,2014.
[16] NASA. Generic Kernels on NAIF[EB/OL].[1999-5-13] (2019-8-6). https://naif.jpl.nasa.gov/pub/naif/generic_kernels/.
[17] KONOPLIV A S,PARK R S,FOLKNER W M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data[J]. Icarus,2016(274):253-260.
[18] GENOVA A,GOOSSENS S,LEMOINE F G. Seasonal and static gravity field of Mars from MGS,Mars Odyssey and MRO radio science[J]. Icarus,2016(272):228-245.
[19] LAINEY V, DEHANT V, PÄTZOLD M. First numerical ephemerides of the Martian moons[J]. Astronomy&Astrophosis, 2007,465(3):1075-1084.
[20] JACOBSON R,LAINEY V. Martian satellite orbits and ephemerides[J]. Planetary and Space Science,2014(102):35-44.