PDF(1148 KB)
Trajectory Optimization and Parameter Analysis for Lunar Ascent
Author information
+
DFH Satellite Co., Ltd., Beijing 100094, China
Show less
History
+
Received |
Revised |
14 Aug 2018 |
11 Oct 2018 |
Issue Date |
|
20 May 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] BENNETT F V. Apollo experience report-mission planning for lunar module descent and ascent,Technical Note D-6846[R]. USA:NASA, 1972.
[2] SOSTARIC R R, MERRIAM R S. Lunar ascent and rendezvous trajectory design[C]//Proceeding of the 31st Annual AAS Rocky Mountain Guidance and Control Conference. Breckenridge, United States:NASA, 2008.
[3] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control and Dynamics, 1998, 21(2):193-206.
[4] HULL D G. Conversion of optimal control problem into parameter optimization problems[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1):57-60.
[5] HUANG G Q, LU Y P, NAN Y. A survey of numerical algorithm for trajectory optimization of flight vehicles[J]. Science China Technological Science, 2012, 55(9):2538-2560.
[6] 李鑫, 刘莹莹, 周军. 载人登月舱上升入轨段的制导律设计[J]. 系统工程与电子技术, 2011, 33(11):2480-2484. LI X, LIU Y Y, ZHOU J. Design of guidance law for lunar ascent phase of manned lunar module[J]. Systems Engineering and Electronics, 2011, 33(11):2480-2484.
[7] 马克茂, 陈海鹏. 登月舱上升段最优轨迹设计[J]. 中国空间科学技术, 2013, 33(2):54-60. MA K M, CHEN H P. Optimal trajectory design for the lunar module in ascent stage[J]. Chinese Space Science and Technology, 2013, 33(2):54-60.
[8] HULL D G. Optimal guidance for quasi-planar lunar ascent[J]. Journal of Optimization Theory and Applications, 2011, 151(2):353-372.
[9] HULL D G,HARRIS M W. Optimal solutions for quasi-planar ascent over a spherical moon[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1218-1223.
[10] HUNTINGTON G T. Comparison of global and local collection methods for optimal control[J]. Journal of Guidance, Control and dynamics, 2007, 31(2):432-436.
[11] BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control and Dynamics, 2006, 29(6):1435-1440.
[12] ROSS I M, FAHROO F. Pseudospectral knotting methods for solving optimal control problem[J]. Journal of Guidance,Control and Dynamics, 2004, 27(3):397-405.
[13] 刘鹤鸣, 丁达理, 黄长强, 等. 基于自适应伪谱法的UCAV低可探测攻击轨迹规划研究[J]. 系统工程与电子技术, 2013, 35(1):78-84. LIU H M, DING D L, HUANG C Q, et al. UCAV low observable attacking trajectory planning based on adaptive pseudospectral method[J]. Systems Engineering and Electronics, 2013, 35(1):78-84.
[14] 韩威华, 甘庆波, 王晓光, 等. 摄动情况下有限推力轨道转移与交会联合优化[J]. 系统工程与电子技术, 2013, 35(7):1486-1491.HAN W H, GAN Q B, WANG X G, et al. Comprehensive optimization for orbit transfer and rendezvous of finite thrust with perturbation[J]. Systems Engineering and Electronics, 2013, 35(7):1486-1491.
[15] BERRUT J P, TREFETHEN L N. Barycentric Lagrange interpolation[J]. SIAM Review, 2004, 46(3):501-517.
[16] BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4(1):1-51.