Trajectory Optimization and Parameter Analysis for Lunar Ascent

ZHANG Lei

PDF(1148 KB)
PDF(1148 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (4) : 391-397. DOI: 10.15982/j.issn.2095-7777.2019.04.012
Article

Trajectory Optimization and Parameter Analysis for Lunar Ascent

  • ZHANG Lei
Author information +
History +

Abstract

According to requirements of the lunar sampling return mission,the lunar ascent trajectory optimization and some of influence factors for the fuel consumption are studied. Based on the ascent motion equations,the trajectory optimization model for optimal fuel consumption with orbit insertion constraints is constructed and then the optimal control of the thrust direction is solved by the Gauss pseudospectral method and the sequential quadratic programming. Using the ascent motion equations with different initial thrust to weight ratio and terminal constraints with different orbit insertion parameters,relevant results on the fuel consumption are acquired by solving the relevant trajectory optimization model and the effects of these parameters on the fuel consumption are analyzed. Three schemes for the non-coplanar ascent,i. e. the yaw steering in ascent,the ascent node maneuver on orbit and the inclination maneuver on orbit,are proposed and the applicable situations are analyzed respectively in term of the fuel consumption.

Keywords

lunar ascent / trajectory optimization / Gauss pseudospectral method / parameter analysis

Cite this article

Download citation ▾
ZHANG Lei. Trajectory Optimization and Parameter Analysis for Lunar Ascent. Journal of Deep Space Exploration, 2019, 6(4): 391‒397 https://doi.org/10.15982/j.issn.2095-7777.2019.04.012

References

[1] BENNETT F V. Apollo experience report-mission planning for lunar module descent and ascent,Technical Note D-6846[R]. USA:NASA, 1972.
[2] SOSTARIC R R, MERRIAM R S. Lunar ascent and rendezvous trajectory design[C]//Proceeding of the 31st Annual AAS Rocky Mountain Guidance and Control Conference. Breckenridge, United States:NASA, 2008.
[3] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control and Dynamics, 1998, 21(2):193-206.
[4] HULL D G. Conversion of optimal control problem into parameter optimization problems[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1):57-60.
[5] HUANG G Q, LU Y P, NAN Y. A survey of numerical algorithm for trajectory optimization of flight vehicles[J]. Science China Technological Science, 2012, 55(9):2538-2560.
[6] 李鑫, 刘莹莹, 周军. 载人登月舱上升入轨段的制导律设计[J]. 系统工程与电子技术, 2011, 33(11):2480-2484. LI X, LIU Y Y, ZHOU J. Design of guidance law for lunar ascent phase of manned lunar module[J]. Systems Engineering and Electronics, 2011, 33(11):2480-2484.
[7] 马克茂, 陈海鹏. 登月舱上升段最优轨迹设计[J]. 中国空间科学技术, 2013, 33(2):54-60. MA K M, CHEN H P. Optimal trajectory design for the lunar module in ascent stage[J]. Chinese Space Science and Technology, 2013, 33(2):54-60.
[8] HULL D G. Optimal guidance for quasi-planar lunar ascent[J]. Journal of Optimization Theory and Applications, 2011, 151(2):353-372.
[9] HULL D G,HARRIS M W. Optimal solutions for quasi-planar ascent over a spherical moon[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1218-1223.
[10] HUNTINGTON G T. Comparison of global and local collection methods for optimal control[J]. Journal of Guidance, Control and dynamics, 2007, 31(2):432-436.
[11] BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control and Dynamics, 2006, 29(6):1435-1440.
[12] ROSS I M, FAHROO F. Pseudospectral knotting methods for solving optimal control problem[J]. Journal of Guidance,Control and Dynamics, 2004, 27(3):397-405.
[13] 刘鹤鸣, 丁达理, 黄长强, 等. 基于自适应伪谱法的UCAV低可探测攻击轨迹规划研究[J]. 系统工程与电子技术, 2013, 35(1):78-84. LIU H M, DING D L, HUANG C Q, et al. UCAV low observable attacking trajectory planning based on adaptive pseudospectral method[J]. Systems Engineering and Electronics, 2013, 35(1):78-84.
[14] 韩威华, 甘庆波, 王晓光, 等. 摄动情况下有限推力轨道转移与交会联合优化[J]. 系统工程与电子技术, 2013, 35(7):1486-1491.HAN W H, GAN Q B, WANG X G, et al. Comprehensive optimization for orbit transfer and rendezvous of finite thrust with perturbation[J]. Systems Engineering and Electronics, 2013, 35(7):1486-1491.
[15] BERRUT J P, TREFETHEN L N. Barycentric Lagrange interpolation[J]. SIAM Review, 2004, 46(3):501-517.
[16] BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4(1):1-51.
PDF(1148 KB)

Accesses

Citations

Detail

Sections
Recommended

/