Autonomous Attitude Estimation Method for Non-Cooperative Target Based on Stereo VISION

HU Qiyang1, WANG Dayi2

PDF(1129 KB)
PDF(1129 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (4) : 341-347. DOI: 10.15982/j.issn.2095-7777.2019.04.005
Topic: Autonomous Control for Spacecraft

Autonomous Attitude Estimation Method for Non-Cooperative Target Based on Stereo VISION

  • HU Qiyang1, WANG Dayi2
Author information +
History +

Abstract

An estimation method based on stereo vision is proposed for the requirement of autonomous relative navigation to a non-cooperative target in on-orbit servicing mission. First, a dynamic model of Markley variables and a measurement model of stereo vision are built. Second,the relation between the motion of the feature points and the rotation of target is researched. Then the Cubature Kalman filter is used to estimate the spinning angular velocity and direction of the spinning axis. Finally,the validity of the proposed estimation algorithm is verified through numerical simulation.

Keywords

non-cooperative target / attitude estimation / Markley variables / stereo vision

Cite this article

Download citation ▾
HU Qiyang, WANG Dayi. Autonomous Attitude Estimation Method for Non-Cooperative Target Based on Stereo VISION. Journal of Deep Space Exploration, 2019, 6(4): 341‒347 https://doi.org/10.15982/j.issn.2095-7777.2019.04.005

References

[1] LI W J, CHENG D Y, LIU X G, et al. On-orbit service(OOS) of spacecraft:areview of engineering developments[J]. Progress in Aerospace Sciences, 2019(108):32-120.
[2] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811.
[3] 陈小前, 袁建平, 姚雯, 等. 航天器在轨服务技术[M]. 北京:中国宇航出版社, 2009.
[4] OPROMOLLA R,FASANO G,RUFINO G,et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017(93):53-72
[5] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):1392-1404. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory and Applications, 2018, 35(10):1392-1404.
[6] LI Y P, WANG Y P, XIE Y C. Using consecutive point clouds for pose and motion estimation of tumbling non-cooperative target[J]. Advances in Space Research, 2019, 63(5):1576-1587.
[7] MISHRA H. Designing robust pose estimator for non-cooperative space targets for visual servoing during approach maneuvers[D]. München:Technische Universit, 2016.
[8] MAHBOUBEH Z J,SEYED M B M. Motion estimation of uncooperative space objects:a case of multi-platform fusion[J]. Advances in Space Research, 2018, 62(9):2665-2678.
[9] SEGAL S, CARMI A, GURFIL P. Stereovision-based estimation of relative dynamics between noncooperative satellites:theory and experiments[J]. Transactions on Control Systems Technology, 2014, 22(2):568-584
[10] PESCE V, LAVAGNA M, BEVILACQUA R.Stereovisionbased pose and inertia estimation of unknown and uncooperative space objects[J]. Advances in Space Research, 2017, 59(1):236-251
[11] QIAN F, ZHU Z H, PAN Q, et al. Relative state inertial estimation of unknown tumbling target by seterovision[J]. IEEE Access, 2018, 23(2):351-258.
[12] HOU X H, MA C, WANG Z, et al. Adaptive pose and inertial parameters estimation of free-floating tumbling space objects using dual vector quaternions[J]. Advances in Mechanical Engineering, 2017, 9(10):1-17.
[13] PESCE V, OPROMOLLA R, SARNO S, et al. Autonomous relative navigation around uncooperative spacecraft based on a single camera[J]. Aerospace Science and Technology, 2019(84):1070-1080.
[14] PESCE V, HAYDAR M F, LAVAGNA M, et al. Comparison of filtering techniques for relative attitude estimation of uncooperative space objects[J]. Aerospace Science and Technology, 2019(84):318-328.
[15] MARKLEY F L. New dynamic variables for momentum-bias spacecraft[J]. Journal of the Astronautical Sciences, 1993, 41(4):557-567.
[16] MARKLEY F L, SEDLAK J E. Kalman filter for spinning spacecraft attitude estimation[J]. Journal of Guidance, Control and Dynamics, 2008, 31(6):1750-1760.
[17] NING X L, DING Z H, XU M Z, et al. A Markley variables-based attitude estimation method using optical flow and a star vector for spinning spacecraft[J]. The Journal of Navigation, 2018, 71(6):1589-1598.
[18] 徐超, 王大轶, 黄翔宇. 采用双目视觉测量的行星着陆相对导航方法[J]. 宇航学报, 2016, 37(7):802-810. XU C, WANG D Y, HUANG X Y.Relative navigation for planetary landing using stereo vision measurements[J]. Journal of Astronautics, 2016, 37(7):802-810.
[19] 王小旭, 潘泉, 王增福, 等. 非线性动态系统确定采样型估计理论[M]. 北京:科学出版社, 2016.
[20] 王大轶, 魏春岭, 熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社, 2017. WANG D Y, WEI C L, XIONG K. Autonomous navigation technology for spacecraft[M]. Beijing:National Defense Industry Press, 2017.
[21] 张淑琴, 王忠贵, 冉隆燧. 空间交会对接测量技术及工程应用[M]. 北京:中国宇航出版社, 2005.
PDF(1129 KB)

Accesses

Citations

Detail

Sections
Recommended

/