An Autonomous Celestial Navigation Method for Deep Space Probe Based on Coplanar Constraint Aided Measurement

MA Xin1,2, NING Xiaolin1,2, LIU Jin2, LIU Gang1,2

PDF(1343 KB)
PDF(1343 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (3) : 293-300. DOI: 10.15982/j.issn.2095-7777.2019.03.014
Article

An Autonomous Celestial Navigation Method for Deep Space Probe Based on Coplanar Constraint Aided Measurement

  • MA Xin1,2, NING Xiaolin1,2, LIU Jin2, LIU Gang1,2
Author information +
History +

Abstract

Measurement error is the main factor that affects the accuracy of the autonomous navigation system for deep space exploration. In this paper,aiming at restraining the measurement error of autonomous navigation system,an autonomous celestial navigation method of deep space probe based on coplanar constrained auxiliary measurement is proposed. Based on the model of the system nonlinear inequality geometric plane constraints, Sequential Quadratic Programming (SQP) is used to deal with the nonlinear inequality constraints of deep space probe autonomous celestial navigation system,which directly aids in reducing the measurement error of the deep space probe autonomous navigation system. CKF-SQP,nonlinear constrained filtering method with measurement optimization, estimates the states of deep space probe autonomous navigation system to further reduce the system random error. Simulation results show that the proposed method can effectively suppress the measurement error and achieve highprecision autonomous navigation of deep space probes. The method can provide a feasible high-precision autonomous navigation method for deep space probe.

Keywords

deep space exploration / autonomous navigation / celestial navigation / nonlinear constraints / SQP

Cite this article

Download citation ▾
MA Xin, NING Xiaolin, LIU Jin, LIU Gang. An Autonomous Celestial Navigation Method for Deep Space Probe Based on Coplanar Constraint Aided Measurement. Journal of Deep Space Exploration, 2019, 6(3): 293‒300 https://doi.org/10.15982/j.issn.2095-7777.2019.03.014

References

[1] 房建成,宁晓琳,刘劲. 航天器自主天文导航原理与方法(第2版)[M]. 北京:国防工业出版社,2017;
[2] 吴伟仁,王大轶,宁晓琳. 深空探测器自主导航原理与技术[M]. 北京:中国宇航出版社,2011.
[3] 王大轶,魏春岭,熊凯. 航天器自主导航技术[M]. 北京:国防工业出版社,2017;
[4] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28. CUI P Y,XU R,ZHU S Y,et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28.
[5] 李俊峰,崔文,宝音贺西. 深空探测自主导航技术综述[J]. 力学与实践,2012,34(2):1-9. Li J F,Cui W,Baoyin H. A survey of autonomous navigation for deep space exploration[J]. Mechanics in Engineering,2012,34(2):1-9.
[6] 张伟,张恒. 天文导航在航天工程应用中的若干问题及进展[J]. 深空探测学报,2016,3(3):204-213. ZHANG W,ZHANG H. Research on problems of celestial navigation in space engineering[J]. Journal of Deep Space Exploration, 2016,3(3):204-213.
[7] SIERKS H,KELLER H U,JAUMANN R,et al. The dawn framing camera[J]. Space science reviews,2011,163(1-4):263-327.
[8] SIMON D. Kalman filtering with state constraints:a survey of linear and nonlinear algorithms[J]. IET Control Theory & Applications, 2010,4(8):1303-1318.
[9] HARTLEY R.,ZISSERMAN A. Multiple view geometry in computer vision[M]. UK:Cambridge University Press,2003.
[10] CAO M,ANDERSON D O,MORSE A S. Localization with imprecise distance information in sensor networks[C]//Proceedings of 44th IEEE Conference on Decision and Control,2005 and 2005 European Control Conference.[S.l.]:IEEE,2005.
[11] BISHOP A N,ANDERSON B D O,FIDAN B,et al. Bearing-only localization using geometrically constrained optimization[J]. IEEE Transactions on Aerospace & Electronic Systems,2009,45(1):308-320.
[12] SCHITTKOWSKI K,ZILLOBER C. Nonlinear programming:algorithms,software,and applications. System Modeling and Optimization[M]. New York,USA:Springer US,2005:73-107.
PDF(1343 KB)

Accesses

Citations

Detail

Sections
Recommended

/