Autonomous Navigation for Precise Landing on Small Celestial Body Based on Improved Nonlinear Predictive Filter

JI Hongxia1, ZONG Hong1, HUANG Xiangyu1,2

PDF(1566 KB)
PDF(1566 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (3) : 284-292. DOI: 10.15982/j.issn.2095-7777.2019.03.013
Article

Autonomous Navigation for Precise Landing on Small Celestial Body Based on Improved Nonlinear Predictive Filter

  • JI Hongxia1, ZONG Hong1, HUANG Xiangyu1,2
Author information +
History +

Abstract

To solve the problem of irregular shape and uneven mass of small celestial body, the key technology of accurate navigation on autonomous precise landing is studied based on improved nonlinear predictive filter. First, the model of gravitational field is established in the design of navigation, and the multi-information measurement model is established based on the inertial measurement, optical camera and the velocity sensor. The nonlinear predictive filter (NPF) is improved combined with the extended Kalman filter (EKF), and the observability of the system is analyzed with the algorithm. The simulation results show that the proposed method can estimate the model error in real time under certain model error caused by gravitational uncertainty. The validity and accuracy of the improved NPF algorithm are verified comparing with the EKF algorithm.

Keywords

nonlinear predictive filter / precise landing / model error / state estimate

Cite this article

Download citation ▾
JI Hongxia, ZONG Hong, HUANG Xiangyu. Autonomous Navigation for Precise Landing on Small Celestial Body Based on Improved Nonlinear Predictive Filter. Journal of Deep Space Exploration, 2019, 6(3): 284‒292 https://doi.org/10.15982/j.issn.2095-7777.2019.03.013

References

[1] KAWACUCHI J I,HASHIMOTO T,MISU T,et al.An autonomous optical guidance and navigation around asteroids[J]. Acta Astronautica,1999,44(5):267-280.
[2] MISU T,HASHIMTO T,NINOMIYA K. OpticaI guidance for autonomous landing of spacecraft[J]. IEEE Transaction on Aerospace and Electronic Systems,1999,35(2):459-473.
[3] KUBOTA T,HASHIMOTO T,KAWAGUCHI J,et al. Navigation, guidance and control of asteroid sample return spacecraft:MUSES-C[J]. NEC Research & Development,2001,42(2):188-192.
[4] SEIDENSTICKER K J,MOHLMANN D,APATHY I,et a1. SESAME-an experiment of the Rosetta lander Philae:objectives and general deign[J]. Space Science Reviews,2007,128(1):301-337.
[5] JOHNSON A E,CHENG Y,MATTHIES L H. Machine vision for autonomous small body navigation[C]//IEEE Aerospace Conference Proceedings.[S.l.]:IEEE,2000.
[6] LEFFERTS E J,MARKLEY F L,SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J] Journal of Guidance,Control, and Dynamics,1982,5(4):536-542.
[7] MOOK D J,JUNKINS J L. Minimum model error estimation for poorly modeled dynamic systems[J]. Journal of Guidance,Control, and Dynamics,1988,11(3):256-261.
[8] CRASSIDIS J L,MARKLEY F L. Predictive filtering for nonlinear systems[J]. Journal of Guidance,Control,and Dynamics,1997,20(3):566-572.
[9] MILLER J K,KONOPLIV A S,ANTREASIAN P G,et al. Determination of shape,gravity,and rotational state of Asteroid 433 Eros[J]. Icarus,2002,155:3-17.
[10] 黄翔宇. 探测器自主导航方法及在小天体探测中的应用研究[D]. 哈尔滨:哈尔滨工业大学,2005. HUANG X Y.Research on spacecraft autonomous navigation and application to small celestial bodies exploration[D].Harbin:Harbin Institute of Technology,2005.
[11] 张晓文,李骥,黄翔宇,等. 基于陆标图像的天体定点着陆信息融合导航方法[J]. 空间控制技术与应用,2014,40(6):10-15. ZHANG X W,LI J,HUANG X Y,et al. Information-fusion-integrated navigation for celestial body pinpoint landing based on landmark image[J]. Aerospace Control and Application,2014,40(6):10-15.
[12] 高为炳,非线性控制系统导论[M]. 北京:科学出版社,1988:619-621.
[13] 黄翔宇,崔平远,崔祜涛. 深空自主导航系统的可观性分析[J].宇航学报,2006,27(3):332-337,358. HUANG X Y,CUI P Y,CUI H T,Observability analysis of deep space autonomous navigation system[J]. Journal of Astronautics, 2006,27(3):332-337,358.
PDF(1566 KB)

Accesses

Citations

Detail

Sections
Recommended

/