Review of Guidance and Control in the Vicinity of Asteroids
YANG Hongwei1,2, BAOYIN Hexi2
Author information+
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Show less
History+
Received
Revised
20 Nov 2017
10 Jan 2018
Issue Date
20 May 2022
Abstract
Asteroid exploration has become an important part of interplanetary missions because of its important scientific significances and engineering values. However, difficulties such as irregular gravity, unknown physical parameters and low escape velocity of asteroids make guidance and control in the vicinity of asteroids very challenging. In this paper, the history, current status and significances of asteroid missions are introduced. Then,the dynamics in the vicinity of asteroids, which are the foundation for studying the guidance and control in the vicinity of asteroids,are introduced. Thereafter,the hot issues and research status of methods of guidance and control for different missions which include hovering, parking orbits, orbit transfer, and landing are discussed in detail. In the conclusion,some relevant directions and problems for future researches are listed based on the research status.
YANG Hongwei, BAOYIN Hexi.
Review of Guidance and Control in the Vicinity of Asteroids. Journal of Deep Space Exploration, 2019, 6(2): 179‒188 https://doi.org/10.15982/j.issn.2095-7777.2019.02.010
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] 曾祥远,李俊峰. 不规则小行星引力场内的飞行动力学[J]. 力学进展,2017(47):429-451. ZENG X Y,LI J F. Flight dynamics in the gravitational fields of irregular asteroids[J]. Advance in Mechanics,2017(47):429-451 [2] BARUCCI M A,CHENG A F,MICHEL P,et al. MarcoPolo-R near Earth asteroid sample return mission[J]. Experimental Astronomy, 2012,33(2-3):645-684. [3] 徐伟彪,赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展,2005,20(11):31-38. XU W B,ZHAO H B. Deep space exploration of asteroids the science perspectives[J]. Advance in Earth Science,2005,20(11):31-38. [4] 于洋,宝音贺西. 小天体附近的轨道动力学研究综述[J]. 深空探测学报,2014,1(2):93-104. YU Y,BAOYIN H X. Review of orbital dynamics in the vicinity of solar system small celestial bodies scientific vision for future missions[J]. Journal of Deep Exploration,2014,1(2):93-104 [5] LAURETTA D S,TEAM O R. An overview of the OSIRIS-REx asteroid sample return mission[C]//43rd Lunar and Planetary Science Conference. The Woodlands,Texas:[s.n],2012. [6] JI J H,LIU L. Revisit of dynamical mechanisms of transporting asteroids in the 3:1 resonance to the near-Earth space[J]. Chinese Journal of Astronomy and Astrophysics,2007,7(1):148. [7] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013,43(5):526-539. CUI P Y,QIAO D. Research progress and prospect of orbital dynamics and control near small bodies[J]. Advances in Mechanics,2013, 43(5):526-539. [8] DUNHAM D W,FARQUHAR R W,MCADAMS J V,et al. Implementation of the first asteroid landing[J]. Icarus,2002,159(2):433-438. [9] YOSHIMITSU T,KAWAGUCHI J,HASHIMOTO T,et al. Hayabusa-final autonomous descent and landing based on target marker tracking[J]. Acta Astronautica,2009,65(5):657-665. [10] KAWAGUCHI J,FUJIWARA A,UESUGI T. Hayabusa-its technology and science accomplishment summary and Hayabusa-2[J]. Acta Astronautica,2008,62(10):639-647. [11] RUSSELL C T,RAYMOND C A. The dawn mission to Vesta and Ceres[J]. Space Science Reviews,2011,163(1-4):3-23. [12] GLASSMEIER K H,BOEHNHARDT H,KOSCHNY D,et al. The Rosetta mission:flying towards the origin of the Solar system[J]. Space Science Reviews,2007,128(1-4):1-21. [13] HUANG J C,JI J H,YE P J,et al. The ginger-shaped asteroid 4179 toutatis:new observations from a successful flyby of Chang'e-2[J]. Scientific Report,2013,3411(3):1-6. [14] MONDELO J M,BROSCHART S,VILLAC B. Dynamical analysis of 1:1 resonances near asteroids-application to Vesta[C]//AIAA/AAS Astrodynamics Specialist Conference. Toronto,Ontario,Canada:AIAA,2010. [15] 崔平远,袁旭,朱圣英,等. 小天体自主附着技术研究进展[J]. 宇航学报,2016,37(7):759-767. CUI P Y,YUAN X,ZHU S Y,et al. Research progress of small body autonomous landing techniques[J]. Journal of Astronautics,2016,37(7):759-767. [16] LANTOINE G,BRAUN R D. Optimal trajectories for soft landing on asteroids[D]. Atlanta,GA:Georgia Institute of Technology, 2006. [17] 崔平远,乔栋,朱圣英,等. 行星着陆探测中的动力学与控制研究进展[J]. 航天器环境工程,2014,31(1):1-8. CUI P Y,QIAO D,ZHU S Y,et al. Research progress of dynamics and control for planetary landing[J]. Spacecraft Environment Engineering,2014,31(1):1-8. [18] 于洋. 小天体引力场中的轨道动力学与研究[D]. 北京:清华大学, 2014. YU Y. Research on orbital dynamics in the gravitational field of small bodies[D]. Beijing:Tsinghua University,2014. [19] SCHEERES D J,WILLIAMS B G,MILLER J K. Evaluation of the dynamic environment of an asteroid:applications to 433 Eros[J]. Journal of Guidance,Control,and Dynamics,2000,23(3):466-475. [20] WERNER R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy,1994,59(3):253-278. [21] WERNER R A,SCHEERES D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy,1996,65(3):313-344. [22] ANTREASIAN P,HELFRICH C,MILLER J,et al. Preliminary planning for near's low-altitude operations at 433 Eros[C]//AAS/AIAA,Astrodynamics Specialist Conference. Girdwood,Alaska:AIAA,1999. [23] JIANG Y,BAOYIN H X,LI J F,et al. Orbits and manifolds near the equilibrium points around a rotating asteroid[J]. Astrophysics and Space Science,2014,349(1):83-106. [24] YU Y,BAOYIN H X. Generating families of 3D periodic orbits about asteroids[J]. Monthly Notices of the Royal Astronomical Society,2012,427(1):872-881. [25] YU Y,BAOYIN H X. Routing the asteroid surface vehicle with detailed mechanics[J]. Acta Mechanica Sinica,2014,30(3):301-309. [26] YU Y,BAOYIN H X. Resonant orbits in the vicinity of asteroid 216 Kleopatra[J]. Astrophysics and Space Science,2013,343(1):75-82. [27] BROSCHART S B,SCHEERES D J. Control of hovering spacecraft near small bodies:application to asteroid 25143 Itokawa[J]. Journal of Guidance,Control,and Dynamics,2005,28(2):343-354. [28] WILLIAMS T,ABATE M. Capabilities of furlable solar sails for asteroid proximity operations[J]. Journal of Spacecraft and Rockets, 2009,46(5):967-975. [29] ZENG X Y,JIANG F H,LI J F. Asteroid body-fixed hovering using nonideal Solar sails[J]. Research in Astronomy and Astrophysics, 2015,15(4):597-607. [30] YANG H W,ZENG X Y,BAOYIN H X. Feasible region and stability analysis for hovering around elongated asteroids with low thrust[J]. Research in Astronomy and Astrophysics,2015,15(9):1571-1586. [31] ZENG X Y,GONG S P,LI J F,et al. Solar sail body-fixed hovering over elongated asteroids[J]. Journal of Guidance,Control,and Dynamics,2016,39(6):1223-1231. [32] SAWAI S,SCHEERES D J,BROSCHART S B. Control of hovering spacecraft using altimetry[J]. Journal of Guidance,Control,and Dynamics,2002,25(4):786-795. [33] FURFARO R. Hovering in asteroid dynamical environments using higher-order sliding control[J]. Journal of Guidance,Control,and Dynamics,2014,38(2):263-279. [34] NAZARI M,WAUSON R,CRITZ T,et al. Observer-based bodyframe hovering control over a tumbling asteroid[J]. Acta Astronautica,2014(102):124-139. [35] LIU X,ZHANG P,LIU K,et al. Compensator-based 6-DOF control for probe asteroid-orbital-frame hovering with actuator limitations[J]. Advances in Space Research,2016,57(9):1914-1927. [36] WANG Y,XU S. Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure[J]. Acta Astronautica,2015(117):450-468. [37] LEE D,SANYAL A K,BUTCHER E A,et al. Finite-time control for spacecraft body-fixed hovering over an asteroid[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51(1):506-520. [38] LEE D,VUKOVICH G. Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid[J]. Aerospace Science and Technology,2015(46):471-483. [39] WOO P,MISRA A K. Bounded trajectories of a spacecraft near an equilibrium point of a binary asteroid system[J]. Acta Astronautica, 2015(110):313-323. [40] WOO P,MISRA A K. Control of spacecraft trajectories near collinear equilibrium points of binary asteroid systems[J]. Journal of Guidance,Control,and Dynamics,2015,39(4):979-984. [41] YANG H W,BAOYIN H X,BAI X L,et al. Bounded trajectories near collinear-like equilibrium points of elongated asteroids using linear control[J]. Astrophysics and Space Science,2017,362(2):27. [42] SCHEERES D J. Orbit mechanics about asteroids and comets[J]. Journal of Guidance,Control,and Dynamics,2012,35(3):987-997. [43] SCHEERES D J,OSTRO S J,HUDSON R S,et al. Dynamics of orbits close to asteroid 4179 Toutatis[J]. Icarus,1998,132(1):53-79. [44] HU W D,SCHEERES D J. Periodic orbits in rotating second degree and order gravity fields[J]. Chinese Journal of Astronomy and Astrophysics,2008,8(1):108-118. [45] SHANG H B,WU X Y,CUI P Y. Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions[J]. Astrophysics and Space Science,2015,355(1):69-87. [46] 崔祜涛,史雪岩,崔平远,等. 绕飞弱引力小天体的轨道保持控制[J]. 高技术通讯,2002(3):54-57. CUI H T,SHI X Y,CUI P Y,et al. Orbits maintenance control flying around a small body[J]. High Technology Letters,2002(3):54-57. [47] 陈杨. 受复杂约束的深空探测轨道精确设计与控制[D]. 北京:清华大学,2013 [48] GUELMAN M. Closed-loop control of close orbits around asteroids[J]. Journal of Guidance,Control,and Dynamics,2014,38(5):854-860. [49] KIKUCHI S,TSUDA Y,KAWAGUCHI J. Delta-V assisted periodic orbits around small bodies[J]. Journal of Guidance,Control,and Dynamics,2017,40(1):150-163. [50] YÁRNOZ G D,CUARTIELLES S J P,MCINNES C R. Alternating orbiter strategy for asteroid exploration[J]. Journal of Guidance, Control,and Dynamics,2015,38(2):280-291. [51] LIU X,BAOYIN H X,MA X. Equilibria,periodic orbits around equilibria,and heteroclinic connections in the gravity field of a rotating homogeneous cube[J]. Astrophysics and Space Science, 2011,333(2):409-418. [52] YANG H W,GONG S P,BAOYIN H X. Two-impulse transfer orbits connecting equilibrium points of irregular-shaped asteroids[J]. Astrophysics and Space Science,2015,357(1):66. [53] SHEN H X,ZHANG T J,LI Z,et al. Multiple-hopping trajectories near a rotating asteroid[J]. Astrophysics and Space Science,2017, 362(3):45. [54] SUROVIK D A,SCHEERES D J. Adaptive reachability analysis to achieve mission objectives in strongly non-Keplerian systems[J]. Journal of Guidance,Control,and Dynamics,2015,38(3):468-477. [55] YANG H W,BAI X L,BAOYIN H X. Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance[J]. Acta Astronautica,2017(132):78-89. [56] HAWKINS M,GUO Y,WIE B. ZEM/ZEV feedback guidance application to fuel-efficient orbital maneuvers around an irregularshaped asteroid[C]//AIAA Guidance,Navigation,and Control Conference. Minneapolis,Minnesota:AIAA,2012. [57] HU H J,ZHU S Y,CUI P Y. Desensitized optimal trajectory for landing on small bodies with reduced landing error[J]. Aerospace Science and Technology,2016(48):178-185. [58] 江秀强,陶婷,杨威,等. 附着小天体的最优制导控制方法[J]. 深空探测学报,2015,2(1):53-60. JIANG X Q,TAO T,YANG W,et al. Optimal guidance control strategies for spacecraft attaches to a small body[J]. Journal of Deep Space Exploration,2015,2(1):53-60. [59] 张鹏. 探测器盘旋/软着陆小天体的自主最优制导与滑模控制方法研究[D]. 吉林:吉林大学,2016. ZHANG P. Research on autonomous optimal guidance and sliding mode control of probe hovering and soft landing on small bodies[D]. Jinlin:Jilin University,2016. [60] PINSON R,LU P. Rapid generation of optimal asteroid powered descent trajectories via convex optimization[C]//AAS/AIAA Astrodynamics Specialist Conference. Vail,CO:AIAA,2015. [61] ACIKMESE B,PLOEN S R. Convex programming approach to powered descent guidance for mars landing[J]. Journal of Guidance, Control,and Dynamics,2007,30(5):1353-1366. [62] LU P,LIU X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control,and Dynamics,2013,36(2):375-389. [63] YANG H W,BAI X L,BAOYIN H X. Rapid generation of timeoptimal trajectories for asteroid landing via convex optimization[J]. Journal of Guidance,Control,and Dynamics,2017,40(3):628-641. [64] BLACKMORE L,ACIKMESE B,SCHARF D P. Minimum-landingerror powered-descent guidance for Mars landing using convex optimization[J]. Journal of guidance,control,and dynamics,2010,33(4):1161-1171. [65] GUELMAN M,HAREL D. Power limited soft landing on an asteroid[J]. Journal of guidance,control,and dynamics,1994,17(1):15-20. [66] YANG H W,BAOYIN H X. Fuel-optimal control for soft landing on an irregular asteroid[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51(3):1688-1697. [67] JIANG F H,BAOYIN H X,LI J F. Practical techniques for lowthrust trajectory optimization with homotopic approach[J]. Journal of Guidance,Control,and Dynamics,2012,35(1):245-258. [68] REN Y, SHAN J. Reliability-based soft landing trajectory optimization near asteroid with uncertain gravitational field[J]. Journal of Guidance,Control,and Dynamics,2015,38(9):1810- 1820. [69] FURFARO R,CERSOSIMO D,WIBBEN D R. Asteroid precision landing via multiple sliding surfaces guidance techniques[J]. Journal of Guidance,Control,and Dynamics,2013,36(4):1075-1092. [70] YANG H W,BAI X L,BAOYIN H X. Rapid trajectory planning for asteroid landing with thrust magnitude constraint[J]. Journal of Guidance,Control,and Dynamics,2017,40(10):2713-2720. [71] 崔平远,朱圣英,崔祜涛. 小天体自主软着陆脉冲机动控制方法研究[J]. 宇航学报,2008,29(2):511-516. CUI P Y,ZHU S Y,CUI H T. Autonomous impulse maneuver control method for soft landing on small bodies[J]. Journal of Astronautics,2008,29(2):511-516. [72] 刘延杰,朱圣英,崔平远. 小天体安全着陆与表面探测控制方法研究[J]. 深空探测学报,2016,3(4):370-376. LIU Y J,ZHU S Y,CUI P Y. A pulse control strategy of landers for hopping exploration on small bodies[J]. Journal of Deep Space Exploration,2016,3(4):370-376. [73] 崔祜涛,史雪岩,崔平远,等. 软着陆小行星的制导与控制规律研究[J]. 飞行力学,2002,20(2):35-38. CUI H T,SHI X Y,CUI P Y,et al. Guidance and control law for soft landing asteroid[J]. Flight Dynamics,2002,20(2):35-38. [74] CARSON J,ACIKMESE A. A model-predictive control technique with guaranteed resolvability and required thruster silent times for small-body proximity operations[C]//AIAA Guidance,Navigation, and Control Conference and Exhibit. Keystone,Colorado:AIAA, 2006. [75] LI S,CUI P Y,CUI H T. Autonomous navigation and guidance for landing on asteroids[J]. Aerospace science and technology,2006,10(3):239-247. [76] 李晓宇. 小行星软着陆动力下降段制导与控制方法研究[D]. 哈尔滨:哈尔滨工业大学,2015. LI X Y. Guidance and control law for asteroid soft landing in power decent phase[D]. Harbin:Harbin Institute of Technology,2015. [77] 马天豪. 小行星探测器动力下降段的控制方法研究[D]. 长春:长春工业大学,2015. MA T H. Study on control methods during the power descent period of probe[D]. Changchun:Changchun University of Technology, 2015. [78] 胡海静,高艾,朱圣英,等. 考虑跟踪制导的小天体着陆轨迹闭环优化方法[J]. 宇航学报,2015,36(12):1384-1390. HU H J,GAO A,ZHU S Y,et al. Trajectory optimization for precision landing on small bodies considering tracking guidance[J]. Journal of Astronautics,2015,36(12):1384-1390. [79] 崔祜涛,史雪岩,崔平远,等. 附着小行星的视线制导规律[J]. 空间科学学报,2002,22(3):256-260. CUI H T,SHI X Y,CUI P Y,et al. Line-of-sight guidance for adhesion asteroid[J]. Chinese Journal of Space Science,2002,22(3):256-260. [80] 李爽,崔平远. 着陆小行星的滑模变结构控制[J]. 宇航学报,2005, 26(6):808-812. LI S,CUI P Y. Variable structure with sliding-mode control for landing on asteroids[J]. Journal Of Astronautics,2005,26(6):808-812. [81] HUANG X,CUI H,CUI P. An autonomous optical navigation and guidance for soft landing on asteroids[J]. Acta Astronautica,2004,54(10):763-771. [82] FENG Y,YU X,HAN F. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica[J]. 2013,49(6):1715- 1722. [83] LAN Q,LI S,YANG J,et al. Finite-time soft landing on asteroids using nonsingular terminal sliding mode control[J]. Transactions of the Institute of Measurement and Control,2014,36(2):216-223. [84] 刘克平,曾建鹏,赵博,等. 基于Terminal滑模的小行星探测器着陆连续控制[J]. 北京航空航天大学学报,2014(10):1323-1328. LIU K P,ZENG J P,ZHAO B,et al. Continuous control for probe landing based on terminal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2014(10):1323-1328. [85] LIU X,SHAN Z,LI Y. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid[J]. Advances in Space Research,2017,59(8),2173-2185. [86] 王茜茜,谢慕君,李元春. 基于模糊参数优化的小行星软着陆控制方法研究[J]. 深空探测学报,2015,2(2):162-167. WANG Q Q,XIE M J,LI Y C. Asteroid soft landing control method based on fuzzy optimization parameters[J]. Journal of Deep Space Exploration,2015,2(2):162-167. [87] 张鹏,刘小松,董博,等. 探测器软着陆小行星的自适应超螺旋控制[J]. 吉林大学学报(工学版),2016,46(5):1609-1615. ZHANG P,LIU X S,DONG B,et al. Adaptive supper-twisting control for spacecraft soft landing on asteroids[J]. Journal of University (Engineering and Technology Edition)2016,46(5):1609-1615. [88] 曹英梅. 小行星探测器着陆段自主导航与控制方法的研究[D]. 长春:长春工业大学,2016. CAO Y M. Study on autonomous navigation and soft landing control methods of asteroid lander[D]. Changchun:Changchun University of technology,2016. [89] GUO Y,HAWKINS M,WIE B. Applications of generalized zeroeffort-miss/zero-effort-velocity feedback guidance algorithm[J]. Journal of Guidance,Control,and Dynamics,2013,36(3):810-820. [90] 袁旭,朱圣英,崔平远. 小天体自主附着多滑模面鲁棒制导方法研究[J]. 深空探测学报,2015,2(4):345-351. YUAN X,ZHU S Y,CUI P Y. Robust multiple sliding surface guidance method for autonomous small celestial body landing[J]. Journal of Deep Space Exploration,2015,2(4):345-351. [91] BELLEROSE J,FURFARO R,CERSOSIMO D O. Sliding guidance techniques for close proximity operations at multiple asteroid systems[C]//AIAA Guidance,Navigation,and Control(GNC)Conference. Boston,MA:AIAA,2013 [92] 梁春辉. 小天体附近探测器运动的轨道和姿态控制方法研究[D]. 吉林:吉林大学,2015. LIANG C H. Research on orbital attitude control for proximity motion of small body space[D]. Jilin:Jinlin University,2015. [93] 胡海静. 行星着陆轨迹规划与制导控制方法研究[D]. 北京:北京理工大学,2016. HU H J. Research on trajectory planning,guidance and control method for planetary landing[D]. Beijing:Beijing Institute of Technology, 2016 [94] SAWAI S,KAWAGUCHI J,SCHEERES D,et al. Development of a target marker for landing on asteroids[J]. Journal of Spacecraft and Rockets,2001,38(4):601-608. [95] TARDIVEL S,SCHEERES D J. Ballistic deployment of science packages on binary asteroids[J]. Journal of Guidance,Control,and Dynamics,2013,36(3):700-709. [96] TARDIVEL S,MICHEL P,SCHEERES D J. Deployment of a lander on the binary asteroid(175706)1996 FG3,potential target of the European MarcoPolo-R sample return mission[J]. Acta Astronautica, 2013(89):60-70. [97] TARDIVEL S,SCHEERES D J,MICHEL P,et al. Contact motion on surface of asteroid[J]. Journal of Spacecraft and Rockets,2014,51(6):1857-1871. [98] HERRERA-SUCARRAT E,PALMER P L,ROBERTS R M. Asteroid observation and landing trajectories using invariant manifolds[J]. Journal of Guidance,Control,and Dynamics,2014,37(3):907-920.
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.