Current Status of Radiation Environment Detection on the Lunar Surface

HOU Donghui1,2,3, ZHANG Shenyi1,2,3, Robert F Wimmer-Schweingruber4, YU Jia4, Soenke Burmeister4, SHEN Guohong1,3, YUAN Bin1,3, WANG Chunqin1,3, ZHANG Binquan1,3

PDF(3295 KB)
PDF(3295 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (2) : 127-133. DOI: 10.15982/j.issn.2095-7777.2019.02.003
Topic:Deep Space Environment Exploration

Current Status of Radiation Environment Detection on the Lunar Surface

  • HOU Donghui1,2,3, ZHANG Shenyi1,2,3, Robert F Wimmer-Schweingruber4, YU Jia4, Soenke Burmeister4, SHEN Guohong1,3, YUAN Bin1,3, WANG Chunqin1,3, ZHANG Binquan1,3
Author information +
History +

Abstract

There is no magnetic protection on the lunar surface,so particle radiation is an important risk factor for human activities on the Moon. In this paper,the radiation environment and radiation sources of the Moon are summarized,and the current situation of lunar exploration is also introduced,particularly several typical lunar radiation detector. Then, the science objectives of Lunar Lander Neutron & Dosimetry (LND) Experiment on Chang'E-4 are explained, including dosimetry for human exploration of the Moon, contributions to heliospheric science, determination of the subsurface water content in the south-pole Aitken basin and the FeO content in the south-pole Aitken basin.

Keywords

particle radiation / lunar / dosimetry / Chang'E-4 / LND

Cite this article

Download citation ▾
HOU Donghui, ZHANG Shenyi, Robert F Wimmer-Schweingruber, YU Jia, Soenke Burmeister, SHEN Guohong, YUAN Bin, WANG Chunqin, ZHANG Binquan. Current Status of Radiation Environment Detection on the Lunar Surface. Journal of Deep Space Exploration, 2019, 6(2): 127‒133 https://doi.org/10.15982/j.issn.2095-7777.2019.02.003

References

[1] DACHEV T P. Characterization of near Earth radiation environment by Liulin type instruments[J]. Advance in Space Research,2009,44(12):1441-1449.
[2] ADAMS J H,SHAPIROM M. Irradiation of the moon by galactic cosimic rays and other particles[C]//Lunar Bases and Space Activities of the 21st century(A86-3011313-14). Houston,TX:Lunar and Planetary Institute,1985.
[3] KIM M H Y,ANGELIS G DE,CUCINOTTA F A. Probabilistic assessment of radiation risk for astronauts in space missions[J]. Acta Astronautica,2010,68(7-8):747-759.
[4] LUCEY P G,TAYLOR G J,HAWKE B R,et al. FeO and TiO2, concentrations in the south pole-Aitken basin:Implications for mantle composition and basin formation[J]. Journal of Geophysical Research Planets,1998,103(E2):3701-3708.
[5] BAKER D N. Clementine particle measurements in lunar orbit[J]. Advances in Space Research,1997,19(10):1587-1591.
[6] MAURICE S,FELDMAN W C,LAWRENCE D J,et al. Highenergy neutrons from the Moon[J]. Journal of Geophysical Research, 2000,105(E8):20365.
[7] FELDMAN W C,MAU RICE S,LAWRENCE D J,et al. Evidence for water ice near the lunar poles[J]. Journal of Geophysical Research,2001,106(E10):23232-23252.
[8] LAWRENCE D J,FELDMAN W C,ELPHIC R C,et al. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers[J]. Journal of Geophysical Research Planets,2002,107(E12):1-26.
[9] DACHEV T P,TOMOV B T,MATVⅡCHUK YU N,et al. An overview of RADOM results for earth and moon radiation environment on Chandrayaan-1 satellite[J]. Advance in Space Research,2011,48(5):779-791.
[10] WRENN G L. Chronology of ‘killer’ electrons:Solar cycles 22 and 23[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2009(71):1210-1218.
[11] MAZUR J E,CRAIN W R,LOOPER M D,et al. New measurements of total ionizing dose in the lunar environment[J]. Space WeatherThe International Journal of Research & Applications,2011,9(7):1-12.
[12] SPENCE H E. Crater Science Team:"An Overview of Results from the Lunar Reconnaissance Orbiter (LRO)Cosmic Ray Telescope for the effects of Radiation(CRaTER)[C]//In Annual Meeting of the Lunar Exploration Analysis Group. Washington,DC:LPI,2010.
[13] 王馨悦,荆涛,张珅毅,等. 嫦娥一号卫星太阳高能粒子探测器的首次观测结果[J]. 地球物理学进展,2012,27(6):2289-2295. WANG X Y,JING T,ZHANG S Y,et al. The first result of Chang'e-1 high energetic particles detector[J]. Progress in Geophysics,2012,27(6):2289-2295.
[14] 王馨悦,张爱兵,荆涛,等. 高能电子爆发与绕月卫星表面电位大幅度联动效应[J]. 地球物理学报,2016,59(10):3533-3542. WANG X Y,ZHANG A B,JING T,et al. Synchronization of energetic electron bursting and lunar orbiter surface charging to negative kilovolts[J]. Chinese Journal of Geophysics,2016,59(10):3533-3542.
[15] SANIN A B,MITROFANOV I G,LITVAK M K,et al. Testing lunar permanently shadowed regions for water ice:LEND results from LRO[J]. Journal of Geophysical Research Planets,2012,117(E12):1991-2012.
[16] YOSHIDA H,WATANABE T,KANAMORI H,et al. Experimental study on water production by hydrogen reduction of lunar soil simulant in a fixed bed reactor[J]. Pain,2000,148(1):36-42.
[17] NYMMIK R A,PANAYUK M I,SUSLOV A A. Galactic cosmic rayflux simulation and predictione[J]. Advances in Space Research the offical Journal of the Commitfee on Space Research,1996,17(2):19-30.
[18] TYLKA A J,ADAMS J H,BOBERG P R,et al. CREME96:a revision of the cosmic ray effects on micro-electronics cook[J]. IEEE Transactions on Nuclear Science,1997,44(6):2150-2160.
[19] SPENVIS GCR particle models[EBIOL].(2018-3-12)[2018-10-15]. https://www.spenvisomake/help/backgrouma/gcr/gcr.html.
PDF(3295 KB)

Accesses

Citations

Detail

Sections
Recommended

/