Development of Near Earth Asteroid Mining and Planetary Defense

QIU Chengbo1,2, SUN Yukun1,2, WANG Yamin1,2, JIANG Jun1,2, CHEN Xin1,2

PDF(902 KB)
PDF(902 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (1) : 63-72. DOI: 10.15982/j.issn.2095-7777.2019.01.010
Article

Development of Near Earth Asteroid Mining and Planetary Defense

  • QIU Chengbo1,2, SUN Yukun1,2, WANG Yamin1,2, JIANG Jun1,2, CHEN Xin1,2
Author information +
History +

Abstract

The technology of near earth asteroid rendezvous, orbiting, landing, and sampling return has been highly developed for decades. OSIRIS-REx analyzes the features of C type asteroid and conducts asteroid sampling. Hayabusa-2 aims to sample under the surface of the asteroid. NASA and ESA begins to turn to Planetary Defense. ARM program sets for asteroid capture and orbital redirection, while ESA and NASA put forward a plan of asteroid impact and deflection assessment. Impact test will be arranged on the binary system to accumulate technology. Besides, Planetary Resources Inc. and Deep Space Industries havemade the blueprint for asteroid commercial mining, respectively, and have carried outorbit verification. The process of near Earth Asteroids detection is reviewed, focusing on OSIRIS-Rex, Hayabusa-2, Planetary Defense of NASA and ESA and Strategic planning of commercial mining for asteroid mining companys. Some key technologies of Planetary Defense and mining in the future are summarized.

Keywords

near Earth asteroid / asteroid deflection / planetary defense / asteroid mining

Cite this article

Download citation ▾
QIU Chengbo, SUN Yukun, WANG Yamin, JIANG Jun, CHEN Xin. Development of Near Earth Asteroid Mining and Planetary Defense. Journal of Deep Space Exploration, 2019, 6(1): 63‒72 https://doi.org/10.15982/j.issn.2095-7777.2019.01.010

References

[1] 李飞, 孟林智, 王彤, 等. 国外近地小行星撞击地球防御技术研究[J]. 航天器工程,2015,24(2):87-95
[2] JOSE S. Bradford space group acquires control of deep space industries,Inc.[Z]. http://www.deepspaceindustries.com.
[3] PLANETARY. Providing resources to fuel industry and sustain life in space[Z]. http://www.planetaryresources.com.
[4] HERGENROTHER C, HILL D. The OSIRIS-REx target asteroids! project: a small telescope initiative to characterize potential spacecraft mission target asteroids[J]. Minor Planet Bulletin,2013,40:164-166
[5] LAURETTA D S,TEAM O R. An overview of the OSIRIS-REx asteroid sample return mission[C]//Lunar and Planetary Science Conference. UCLA,USA:[s.n.],2012.
[6] NOLAN M C, MAGRI C, HOWELL E S, et al. Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations[J]. Icarus,2013,226(1):629-640
[7] BINZEL R P, DEMEO F E, BURT B J, et al. Spectral slope variations for OSIRIS-REx target Asteroid (101955) Bennu: possible evidence for a fine-grained regolith equatorial ridge[J]. Icarus,2015,256:22-29
[8] REUTER D C,SIMON-MILLER A A. The OVIRS visible/IR spectrometer on the OSIRIS-REx mission[J]. 2012.
[9] ALLEN B,GRINDLAY J,HONG J,et al. The REgolith x-ray Imaging Spectrometer(REXIS)for OSIRIS-REx:identifying regional elemental enrichment on asteroids[C]//SPIE Optical Engineering+ Applications. International Society for Optics and Photonics. [S.l.]:SPIE,2013:88400M-88400M-17.
[10] HERGENROTHER C W, BARUCCI M A, BARNOUIN O, et al. The design reference asteroid for the OSIRIS-REx mission Target (101955) Bennu[J]. arXiv preprint arXiv,2014:1409
[11] BERRY K,ANTREASIAN P,MOREAU M C,et al. OSIRI-REx Touch and Go(TAG)navigation performance[EB/OL].(2015-01-30)[2017-07-05]. https://ntrs.nasa.gov/search.jsp?R=20160000219.
[12] MAY A,SUTTER B,LINN T,et al. OSIRIS-REx Touch-and-Go(TAG)mission design for asteroid sample collection[EB/OL].(2014-09-29)[2017-07-05]. https://ntrs.nasa.gov/search.jsp?R=20140017837.
[13] REILL J,SEDLMAYR H,NEUGEBAUER P,et al. MASCOT—asteroid lander with innovative mobility mechanism[J]. ASTRA,2015(2):1-7
[14] LANGE C,DIETZE C,HO T M,et al. Baseline design of a mobile asteroid surface scout(mascot)for the hayabusa-2 mission[C]//7th International Planetary Probe Workshop Proceedings,Barcelona. Spain:[s.n.],2010:14-18.
[15] BODEN R C,MORI O,SAIKI T,et al. Design of a lander for in-situ investigation and sample-return from a jupiter trojan asteroid on the solar power sail mission[C]//25th Workshop on JAXA Astrodynamics and Flight Mechanics. Japan:JAXA,2015.
[16] TSUDA Y, YOSHIKAWA M, ABE M, et al. System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362
[17] BONIN G,FOULDS C,ARMITAGE S,et al. Prospector-1:the first commercial small spacecraft mission to an asteroid[J]. 2016: 1-9.
[18] GOLDBERG H,VOORHEES C. The arkyd spacecraft development platform[EB/OL].(2015-12-08). http://xueshu.baidu.com/usercenter/paper/show?paperid=2c0c6b7e40eb4fb29bff3db3f403e200&site=xueshu_se&hitarticle=1.
[19] ABELL P,MAZANEK D,REEVES D,et al. NASA's Asteroid Redirect Mission(ARM)[C]//Aas/division for Planetary Sciences Meeting. [S.l.]:AAS/Division for Planetary Sciences Meeting Abstracts,2015.
[20] STRANBROPHY J R,MUIRHEAD B. Near-earth asteroid retrieval mission(ARM)study[C]//33rd International Electric Propulsion Conference. USA:[s.n.],2013.
[21] GE N,LANDAU D,LANTOINE G,et al. Overview of mission design for NASA asteroid redirect robotic mission concept[C]//33rd International Electric Propulsion Conference. Washington,USA:[s.n.]:2013.
[22] CHENG A F,GALVEZ A,CARNELLI I,Et al. AIDA:asteroid impact & deflection assessment[C]//AGU Fall Meeting Abstracts. [S.l.]:AGU,2012.
[23] BARNOUIN O S,BIELE J,CARNELLI I,Et al. The Asteroid Impact and Deflection Assessment(AIDA)mission:science proximity operations[C]//LPSC 2016 47th Lunar and Planetary Science Conference. [S.l.]:LPSC,2016.
[24] 吴伟仁,刘旺旺,唐玉华,等. 深空探测及几项关键技术发展趋势[C]// 中国宇航学会深空探测技术专业委员会第十届学术年会. 北京:中国宇航学会深空探测技术专业委员会,2013.
[25] 徐文福. 空间机器人目标捕获的路径规划与实验研究[D]. 哈尔滨:哈尔滨工业大学,2007.
PDF(902 KB)

Accesses

Citations

Detail

Sections
Recommended

/