Minimum-Fuel Mars Ascent Trajectory Design Based on Gauss Peseudospectral Method

KE Senkai1,2, LI Shuang1,2, XIAO Dongdong3, WANG Weihua3, NIE Qinbo3

PDF(1036 KB)
PDF(1036 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (3) : 269-275. DOI: 10.15982/j.issn.2095-7777.2018.3.009

Minimum-Fuel Mars Ascent Trajectory Design Based on Gauss Peseudospectral Method

  • KE Senkai1,2, LI Shuang1,2, XIAO Dongdong3, WANG Weihua3, NIE Qinbo3
Author information +
History +

Abstract

Mars Ascent Vehicle(MAV)design is closely related to trajectory design. However,the existing method mostly decoupled the staging optimization and trajectory optimization,resulting in computational inefficiency and poor robustness. A coupled staging-trajectory multiphase optimization algorithm is proposed in this paper for a two-stage MAV design. Considering given vehicle,mission,path and control constraints,the objective of the optimization algorithm is to minimize the Gross Lift-off Mass(GLOM)of the two-stage MAV,and the algorithm is based on Gauss pseudospectral method. By using this algorithm,an optimal staging design is obtained,and an optimal trajectory is designed to minimize propellant consumption simultaneously. And the algorithm solves the problem that trajectory optimization algorithm couldn’t converge due to the unreasonable MAV staging design. In addition,numerical simulations show that the coupled staging-trajectory multiphase optimization algorithm have good robustness and strong convergence.

Keywords

Mars sample return(MSR) / Mars ascent vehicle(MAV) / coupled staging-trajectory optimization / Gauss pseudospectral method(GPM)

Cite this article

Download citation ▾
KE Senkai, LI Shuang, XIAO Dongdong, WANG Weihua, NIE Qinbo. Minimum-Fuel Mars Ascent Trajectory Design Based on Gauss Peseudospectral Method. Journal of Deep Space Exploration, 2018, 5(3): 269‒275 https://doi.org/10.15982/j.issn.2095-7777.2018.3.009

References

[1] JONES A. Achieving Mars sample return on a single ares V launch[D]. Alabama:The University of Alabama in Huntsville,2010.
[2] MATTINGLY R,MAY L. Mars sample return as a campaign[C]//Aerospace Conference,2011 IEEE. Big Sky,MT,USA:IEEE,2011.
[3] 于登云,孙泽洲,孟林智,等. 火星探测发展历程与未来展望[J]. 深空探测学报,2016,3(2):108-113
YU D Y,SUN Z Z,MENG L Z,et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration,2016,3(2):108-113
[4] RÉGNIER P,KOECK C,SEMBELY X,et al. Rendezvous GNC and system analyses for the Mars sample return mission[C]//56th International Astronautical Congress of the International Astronautical Federation,the International Academy of Astronautics,and the International Institute of Space Law. Fukuoka,Japan:IAF,2005.
[5] WHITEHEAD J. Defining the Mars ascent problem for sample return[C]//AIAA SPACE 2008 Conference & Exposition. San Diego,California:AIAA,2008.
[6] LI S,JIANG X Q. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences,2014(69):40-57
[7] DUKEMAN G A. Atmospheric ascent guidance for rocket-powered launch vehicles[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit,Guidance,Navigation,and Control and Co-located Conferences. Monterey,California:AIAA,2002.
[8] LU P,SUN H,TSAI B. Closed-loop endoatmospheric ascent guidance[J]. Journal of Guidance Control and Dynamics,2003,26(2):283-294
[9] SEYWALD H,CLIFF E M. Neighboring optimal control based feedback law for the advanced launch system[J]. Journal of Guidance,Control,and Dynamics,1994,17(6):1154-1162
[10] 郭延宁,马广富,曾添一,等. 基于燃料最优解的火星精确着陆制导策略研究[J]. 深空探测学报,2015,2(1):61-68
GUO Y N,MA G F,ZENG T Y,et al. Mars precision landing guidance strategy based on fuel optimal solutions[J]. Journal of Deep Space Exploration,2015,2(1):61-68
[11] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance control and dynamics,1998,21(2):193-207
[12] PATTERSON M A,RAO A V. GPOPS-II:a Matlab software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software(TOMS),2014,41(1):1
[13] 杨希祥,张为华. 基于Gauss伪谱法的固体运载火箭上升段轨迹快速优化研究[J]. 宇航学报,2011,32(1):15-21
YANG X X,ZHANG W H. Rapid optimization of ascent trajectory for solid launch vehicles based on Gauss pseudospectral method[J]. Journal of Astronautics,2011,32(1):15-21
[14] COSKUN E C. Multistage launch vehicle design with thrust profile and trajectory optimization[D]. Turkey:Middle East Technical University,2014.
[15] BENITO J,JOHNSON B J. Trajectory optimization for a Mars ascent vehicle[C]//AIAA/AAS Astrodynamics Specialist Conference. Long Beach,California,USA:AIAA,2016.
[16] O’NEIL W J,CAZAUX C. The Mars sample return project[J]. Acta Astronautica,2000,47(2–9):453-465
[17] FERREIRA E,AUGROS P,ORTEGA G. GNC design for a Mars ascent vehicle[C]//6th International ESA Conference on Guidance,Navigation and Control Systems . Loutraki,Greece:ESA,2006.
[18] 孟林智,董捷,许映乔,等. 无人火星取样返回任务关键环节分析[J]. 深空探测学报,2016,3(2):114-120
MENG L Z,DONG J,XU Y Q,et al. Analysis of key technologies for unmanned Mars sample return mission[J]. Journal of Deep Space Exploration,2016,3(2):114-120
[19] WOOLLEY R. A simple analytic model for estimating Mars ascent vehicle mass and performance [C]//Aerospace Conference,2015 IEEE. Big Sky,MT,USA:IEEE,2015:1-11.
[20] 江秀强. 大不确定性条件下火星进入高精度组合导航方法研究[D]. 南京:南京航空航天大学,2015.
JIANG X Q,Study on high-precision integrated navigation technology for Mars entry under large uncertainty[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015.
[21] WHITEHEAD J C. Trajectory analysis and staging trades for smaller Mars ascent vehicles[J]. Journal of spacecraft and rockets,2005,42(6):1039-1046
PDF(1036 KB)

Accesses

Citations

Detail

Sections
Recommended

/