Preliminary Research on the Lunar Base Energy System

REN Depeng, LI Qing, XU Yingqiao

PDF(465 KB)
PDF(465 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (6) : 561-568. DOI: 10.15982/j.issn.2095-7777.2018.06.009

Preliminary Research on the Lunar Base Energy System

  • REN Depeng, LI Qing, XU Yingqiao
Author information +
History +

Abstract

The establishment of lunar bases is an inevitable trend in the following deep space exploration. Meanwhile,the energy system is a basic condition for keeping a lunar base working well. In this paper,basic requirements of the energy system are determined by combining lunar base energy requirements and lunar environment features. A variety of energy resources are analyzed comparatively,indicating that utilizing solar energy is the main method in the primary stage of the lunar base energy system. The core technology of utilizing solar energy is to store it with high efficiency. Based on the analysis of energy storage technologies,an energy system scheme using thermochemical hydrogen production combining hydrogen and oxygen fuel cells and photovoltaic power generation devices is proposed. The key technologies for the system design are analyzed,which can be referred in the detailed design of the lunar base energy system.

Keywords

lunar base / energy system / scheme overview

Cite this article

Download citation ▾
REN Depeng, LI Qing, XU Yingqiao. Preliminary Research on the Lunar Base Energy System. Journal of Deep Space Exploration, 2018, 5(6): 561‒568 https://doi.org/10.15982/j.issn.2095-7777.2018.06.009

References

[1] ?欧阳自远,邹永廖,李春来,等. 月球某些资源的开发利用前景[J]. 地球科学-中国地质大学学报,2002,27(5):498-503
OUYANG Z Y,ZOU Y L,LI C L,et al. Prospect of exploration and utilization of some lunar resources[J]. Earth Science-Journal of China University of Geosciences,2002,27(5):498-503
[2] 果琳丽,李志杰,齐玢,等. 一种综合式载人月球基地总体方案及建造规划设想[J]. 航天返回与遥感,2014,35(6):1-10
GUO L L,LI Z J,QI B,et al. An overall tentative plan and construction blueprint of manned lunar base[J]. Spacecraft Recovery & Remote Sensing,2014,35(6):1-10
[3] 张熇,胡智新. 无人月球基地总体初步设想[J]. 航天器工程,2010,19(5):95-98
ZHANG H,HU Z X. A tentative idea for robotics lunar base[J]. Spacecraft Engineering,2010,19(5):95-98
[4] 果琳丽,王平,朱恩涌,等. 载人月球基地工程[M]. 北京:中国宇航出版社,2013.
GUO L L,WANG P,ZHU E Y,et al. Manned lunar base engineering[M]. Beijing:China Astronautics Press,2013.
[5] 侯建文,赵晨,常立平,等. 未来月球探测总体构想[J]. 载人航天,2015,21(5):425-434
HOU J W,ZHAO C,CHANG L P,et al. General conception of future lunar exploration[J]. Manned Spaceflight,2015,21(5):425-434
[6] 徐向华,梁新刚,任建勋. 月球表面热环境数值分析[J]. 宇航学报,2006,27(2):153-156
XU X H,LIANG X G,REN J X. Numerical analysis of thermal environment of lunar surface[J]. Journal of Astronautics,2006,27(2):153-156
[7] 陈磊,李飞,任德鹏,等. 月面和近月空间环境及其影响[J]. 航天器工程,2010,19(5):76-81
CHEN L,LI F,REN D P,et al. Lunar surface and near lunar space environments and their effects[J]. Spacecraft Engineering,2010,19(5):76-81
[8] 张忠卫,陆剑峰,池卫英,等. 砷化镓太阳电池技术的进展与前景[J]. 上海航天,2003,20(3):33-38
ZHANG Z W,LU J F,CHI W Y,et al. Technique development and prospects analysis of GaAs solar cell[J]. Aerospace Shanghai,2003,20(3):33-38
[9] 任德鹏,夏新林,贾阳. 月球坑的温度分布与瞬态热响应特性研究[J]. 宇航学报,2007,28(6):1553-1537
REN D P,XIA X L,JIA Y. Analysis on temperature distribution and transient thermal response of lunar concavity[J]. Journal of Astronautics,2007,28(6):1553-1537
[10] 李成,杨秀,张美霞,等. 基于成本分析的超级电容器和蓄电池混合储能优化配置方案[J]. 电力系统自动化,2013,37(18):20-24
LI C,YANG X,ZHANG M X,et al. Optimal configuration scheme for hybrid energy storage system of super-capacitors and batteries based on cost analysis[J]. Automation of Electric Power Systems,2013,37(18):20-24
[11] 安晓雨,谭玲生. 空间飞行器用锂离子蓄电池储能电源的研究进展[J]. 电源技术,2006,30(1):70-73
AN X Y,TAN L S. Development of lithium-ion batteries as new power sources for space application[J]. Chinese Journal of Power Sources,2006,30(1):70-73
[12] 刘自军,向艳超,斯东波,等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学(技术科学),2014(44):353-360
LIU Z J,XIANG Y C,SI D B,et al. Design and verification of thermal control system for Chang'E-3 probe[J]. Sci. Sin. Tech.,2014(44):353-360
[13] 姚睿,吴克启. 斯特林发动机在空间太阳能发电中的应用[J]. 太阳能学报,2001,22(1):111-114
YAO R,WU K Q. Application of free piston stirling engine in space solar power system[J]. Acta Energiae Solaris Sinica,2001,22(1):111-114
[14] 赵建云,朱冬升,周泽广,等. 温差发电技术的研究进展及现状[J]. 电源技术,2010,34(3):310-313
ZHAO J Y,ZHU D S,ZHOU Z G,et al. Research progress of thermoelectric power generation[J]. Chinese Journal of Power Sources,2010,34(3):310-313
[15] 晏维,邱国跃,袁旭峰. 半导体温差发电技术应用及研究综述[J]. 电源技术,2016,40(8):1737-1740
YAN W,QIU G Y,YUAN X F. Application and research of semiconductor thermoelectric power generation technology[J]. Chinese Journal of Power Sources,2016,40(8):1737-1740
[16] GEORGE R. Enabling exploration with small radioisotope power systems[R]. USA:NASA Office of Space Science,2004.
[17] 崔萍,李歆,张楠,等. 前苏联和俄罗斯同位素温差发电器发展状况[J]. 电源技术,2004,28(12):803-806
CUI P,LI X,ZHANG N,et al. The development of radioisotope thermoelectric generator in USSR & Russia[J]. Chinese Journal of Power Sources,2004,28(12):803-806
[18] 冉旭,单建强,朱继洲. 空间核反应堆概述[J]. 国外核动力,2004,25(5):1-5
RAN X,SHAN J Q,ZHU J Z. Summary of space nuclear reactor power[J]. Foreign Nuclear Power,2004,25(5):1-5
[19] 姚成志,胡古,解家春,等. 月球基地核电源系统方案研究[J]. 原子能科学技术,2016,50(3):464-470
YAO C Z,HU G,XIE J C,et al. Scheme research of nuclear reactor power system for lunar base[J]. Atomic Energy Science and Technology,2016,50(3):464-470
[20] UPTON H,PROTSIK A,GAMBLE R,et al. The application of SP-100 technology in a lunar surface power system[C]//Proceedings of the Conference on Advanced SEI Technologies. Washington D.C.:AIAA,1991.
[21] LEE M,DAVID P,LOUIS Q. System concepts for affordable fission surface power[R]. USA:NASA,2008.
[22] KING J C,EL-GENK M S. Submersion-subcritical safe space(S4)reactor[J]. Nuclear Engineering and Design,2006,236(17):1759-1777
[23] POSTON D I. The heatpipe-operated Mars exploration reactor(HOMER)[C]//Space Technology and Applications International Forum-2001. [S.l]:AIP Publishing,2001,552(1):797-804.
[24] 张明,蔡晓东,杜青,等. 核反应堆空间应用研究[J]. 航天器工程,2013,22(6):119-126
ZHANG M,CAI X D,DU Q,et al. Research on nuclear reactor in space application[J]. Spacecraft Engineering,2013,22(6):119-126
[25] 张亚媛,张沛龙,葛静,等. 燃料电池应用现状及发展前景[J]. 新材料产业,2014(6):65-68
ZHANG Y Y,ZHANG P L,GE J,et al. Current situation and prospect of fuel cell application[J]. Advanced Materials Industry,2014(6):65-68
[26] 杨紫光,叶芳,郭航,等. 航天电源技术研究进展[J]. 化工进展,2012,31(6):1231-1237
YANG Z G,YE F,GUO H,et al. Progress of space power technology[J]. Chemical Industry and Engineering Progress,2012,31(6):1231-1237
[27] 吴峰,叶芳,郭航,等. 燃料电池在航天中的应用[J]. 电池,2007,37(3):237-240
WU F,YE F,GUO H,et al. The application of fuel cells in aerospace[J]. Battery Bimonthly,2007,37(3):237-240
[28] 宋世栋,张华民,马霄平,等. 可再生燃料电池的研究进展[J]. 电源技术,2006,30(3):175-178
SONG S D,ZHANG H M,MA X P,et al. Progress in research on renewable fuel cells[J]. Chinese Journal of Power Sources,2006,30(3):175-178
[29] JAN D L,ROHATGI N,VOECKS G,et al. Thermal,mass and dower interactions for lunar base life support and power systems[C]//International Conference on Environmental Systems. Colorado:Jet Propulsion Laboratory of the California Institute of Technology,1993.
[30] 罗祖分,宋保银,曹西. 考虑热物性变化的月壤温度数值模拟[J]. 中国空间科学技术,2016,36(3):70-76
LUO Z F,SONG B Y,CAO X. Numerical simulation of lunar soil temperature considering its variable thermal properties[J]. Chinese Space Science and Technology,2016,36(3):70-76
[31] BELEN Z,JOSE M M,LUISA F C,et al. Review on thermal energy storage with phase change:materials,heat transfer analysis and applications[J]. Applied Thermal Engineering,2003(23):251-283
[32] 赵建国,郭全贵,高晓晴,等. 石蜡/膨胀石墨相变储能复合材料的研制[J]. 新型炭材料,2009,24(2):114-118
ZHAO J G,GUO Q G,GAO X Q,et al. Preparation of paraffin/expanded graphite phase change composites for thermal storage[J]. New Carbon Materials,2009,24(2):114-118
[33] 顾晓滨,秦善,牛菁菁. 相变储能矿物材料研究现状及其展望[J]. 矿物岩石地球化学通报,2014,33(6):932-940
GU X B,QIN S,NIU J J. Research status and prospect on phase change mineral materials[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2014,33(6):932-940
[34] 许骏,于思荣. 铝基合金相变储热材料的研究现状与发展趋势[J]. 材料导报,2013,27(10):93-97
XU J,YU S R. Research and application progress of Al-based alloy phase change materials using for thermal storage[J]. Materials Review,2013,27(10):93-97
[35] 孙峰,彭浩,凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术,2015,4(6):577-584
SUN F,PENG H,LING X. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology,2015,4(6):577-584
[36] SCHMIDT M,SZCZUKOWSKI C,ROBKOPF C,et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Appl. Therm. Eng.,2014,62(2):553-559
[37] KATO Y,YAMADA M,KANIE T,et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors[J]. Nucl. Eng. Des.,2001,210(1-3):1-8.
[38] KODAMA T,OHTAKE H,MATSUMOTO S,et al. Thermochemical methane reforming using a reactive WO3/W redox system[J]. Energy,2000(25):411-425
[39] BLOCK T,KNOBLAUCH N,SCHMÜCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochim. Acta,2014(577):25-32
[40] FUNK J E,REINSTROM R M. Final report energy depot electrolysis systems study,TID-20441[R]. USA:[s.n],1964.
[41] 陈宏善,魏花花. 利用太阳能制氢的方法及发展现状[J]. 材料导报,2015,29(6):36-40
CHEN H S,WEI H H. The methods and development status for hydrogen production from water-splitting using solar energy[J]. Materials Review,2015,29(6):36-40
[42] 王宝辉,吴红军,刘淑芝,等. 太阳能分解水制氢技术研究进展[J]. 化工进展,2006,25(7):733-738
WANG B H,WU H J,LIU S Z,et al. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress,2006,25(7):733-738
[43] STEINFELD A. Solar hydrogen production via a two-step-water splitting thermochemical cycle based on Zn/ZnO redox reactions[J]. International Journal of Hydrogen Energy,2002,27(6):611-619
[44] 徐波,王树林,李生娟,等. 纳米锌水解制氢实验[J]. 化工学报,2009,60(5):1275-1280
XU B,WANG S L,LI S J,et al. Experiment for hydrogen making by hydrolyzing Zn nanoparticles[J]. CIESC Journal,2009,60(5):1275-1280
PDF(465 KB)

Accesses

Citations

Detail

Sections
Recommended

/