Preliminary Study on the Orbit Determinationof Chang’e-4 Lunar Relay Satellite Mission

DUAN Jianfeng1,2,3, LIU Yong2,3, LI Xie2,3, CHEN Ming2,3, WANG Zhaokui1

PDF(1074 KB)
PDF(1074 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (6) : 531-538. DOI: 10.15982/j.issn.2095-7777.2018.06.005

Preliminary Study on the Orbit Determinationof Chang’e-4 Lunar Relay Satellite Mission

  • DUAN Jianfeng1,2,3, LIU Yong2,3, LI Xie2,3, CHEN Ming2,3, WANG Zhaokui1
Author information +
History +

Abstract

The Chang' e-4 mission will explore the back of the moon by the lander,inspector and relay satellites that orbit the second Lagrange point(L2). The relay satellites have been launched and entered Halo orbit around L2 successfully. Based on the mission orbit dynamics model of the relay satellite,the perturbation source magnitude of the relay satellite in Halo orbit and the main factors affecting the orbit determination and prediction are analyzed by simulation. The results show that the Solar pressure perturbation is the main factor affecting the orbit determination and prediction. In order to reduce the influence and improve the orbit determination accuracy,a method for calculating the equivalent pressure area is proposed based on the cannon-ball model,combined with the operational characteristics in orbit and the characteristics of the structure of the relay satellite. The simulation results show that the orbit determination accuracy of velocity can be improved about one order of magnitude by using the modified cannon-ball model

Keywords

Chang' e-4 lunar relay satellite mission / the Halo orbit / the cannon-ball model / perturbation magnitude analysis / error source analysis

Cite this article

Download citation ▾
DUAN Jianfeng, LIU Yong, LI Xie, CHEN Ming, WANG Zhaokui. Preliminary Study on the Orbit Determinationof Chang’e-4 Lunar Relay Satellite Mission. Journal of Deep Space Exploration, 2018, 5(6): 531‒538 https://doi.org/10.15982/j.issn.2095-7777.2018.06.005

References

[1] 叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13-18
YE P J,PENG J. Deep space exploration and its prospect in China[J]. Engineering Science,2006,8(10):13-18
[2] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展,2004,19(3):351-358
OUYANG Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advance in Earth Sciences,2004,19(3):351-358
[3] 欧阳自远,李春来,邹永廖,等. 嫦娥一号的初步科学成果[J]. 自然杂志,2010,32(5):249-266
OUYANG Z Y,LI C L,ZOU Y L,et al. The primary science results from the Chang’e-1 probe[J]. Chinese Journal of Nature,2010,32(5):249-266
[4] 欧阳自远. 嫦娥二号的初步成果[J]. 自然杂志,2013,35(6):391-395
OUYANG Z Y. Chang’E-2 preliminary results[J]. Chinese Journal of Nature,2013,35(6):391-395
[5] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报,2016,3(4):323-333
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space of Exploration,2016,3(4):323-333
[6] BARROW-GREEN J. Poincaré and the three-body problem[M]. Providence,Rhode Island:American Mathematical Society-London Mathematical Society,1997.
[7] FARQUHAR R W. The flight of ISEE-3/ICE:origins,mission history,and a legacy[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Boston,Massachusetts:AIAA,1998.
[8] 侯锡云,刘林. 共线平动点的动力学特征及其在深空探测中的应用[J]. 宇航学报,2008,29(3):22-28
HOU X Y,LIU L. The dynamics and applications of the collinear libration points in deep space exploration[J]. Journal of Astronautics,2008,29(3):22-28
[9] 徐明. 平动点轨道的动力学与控制研究综述[J]. 宇航学报,2009,30(4):1299-1313
XU M. Overview of orbital dynamics and control for libration point orbits[J]. Journal of Astronautics,2009,30(4):1299-1313
[10] HOWELL K C. Families of orbits in the vicinity of the conllinear libration points[J]. The Journal of the Astronautical Sciences,2001,49(1):107-125
[11] GÓMEZ G,LLIBRE J,MARTÍNEZ R,et al. Dynamics and mission design near libration points[M]. [S.l]: World Scientific,2001.
[12] 刘磊,曹建峰,胡松杰,等. 地月平动点中继应用轨道维持[J]. 深空探测学报,2015,2(4):318-324
LIU L,CAO J F,HU S J,et al. Maintenance of relay orbit about the Earth-Moon collinear libration points[J]. Journal of Deep Space of Exploration,2015,2(4):318-324
[13] 高珊,周文艳,梁伟光,等. 地月拉格朗日L2点中继星轨道分析与设计[J]. 深空探测学报,2017,4(2):122-129
GAO S,ZHOU W Y,LIANG W G,et al. Trajectory analysis and design for relay satellite using Lagrange L2 point of Earth-Moon system[J]. Journal of Deep Space Exploration,2017,4(2):122-129
[14] 吴伟仁,王琼,唐玉华,等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报,2017,4(2):111-117
WU W R,WANG Q,TANG Y H,et al. Design of Chang’E-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration,2017,4(2):111-117
[15] 汤锡生,陈贻迎,朱民才. 载人飞船轨道确定和返回控制[M]. 北京:国防工业出版社,2002
TANG X S,CHEN Y Y,ZHU M C. Orbit determination and reentry control for manned spacecraft[M]. Beijing:National Industry Press,2002.
[16] 胡杰松,唐歌实. 北京中心深空探测器精密定轨与分析软件系统[J]. 飞行器测控学报,2010,29(5):69-74
HU S J,TANG G S. BACC orbit determination and analysis software for deep-space explorers[J]. Journal of Spacecraft TT & C Technology,2010,29(5):69-74
[17] 段建锋,曹建峰,陈明,等. GRAIL月球重力场模型对嫦娥卫星定轨精度的改进[J]. 中国科学:物理学力学天文学,2017,47(6):069502
DUAN J F,CAO J F,CHEN M,et al. The improvements of Chang’e series satellites orbit determination from GRAIL lunar gravity model[J]. Science In China(Series G),2017,47(6):069502
[18] 朱民才. 载人航天轨道确定、轨道控制及任务规划[M]. 北京:国防工业出版社,2007.
[19] 唐歌实,李勰. 载人航天轨道确定技术及在交会对接中的应用[M]. 北京:国防工业出版社,2013.
TANG G S,LI X. Orbit determination technology of manned spacecraft and application in rendenzvous and docking[M]. Beijing:National Industry Press,2013.
PDF(1074 KB)

Accesses

Citations

Detail

Sections
Recommended

/