1. Institute of Space Science, Macao University of Science and Technology, Macau 00853, China; 2. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
Show less
History+
Received
Revised
15 Nov 2017
30 Dec 2017
Issue Date
20 May 2022
Abstract
Chang’e-4 mission is expected to land within the Von Kármán crater on the lunar far side and provides an opportunity to in situ study the South Pole-Aitken basin which is the largest and oldest recognized impact basin on the Moon. Chemical compounds (TiO2 and FeO) and mineralogical composition of the Von Kármán crater are analyzed based on several spectral data, which aims to provide more technical support for the future exploration in the Chang’e-4 mission. The Von Kármán crater is TiO2-pool (about 1.5~2.5 wt%), FeO-rich (about 12~16 wt%), and infilled by low-Ti basalts. The materials outside the crater are dominated by noritic materials (Low-Ca pyroxene) with abundance of TiO2(~1 wt%)and FeO(~10 wt%). In addition, some plagioclase-rich layers are also exposed on the southern region outside the Von Kármán crater.
ZHANG Xunyu, XU Tianyi, LI Cui.
Compositional Studies of the Von Kármán Crater. Journal of Deep Space Exploration, 2018, 5(1): 66‒70 https://doi.org/10.15982/j.issn.2095-7777.2018.01.009
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
[1] ?STUART-ALEXANDER D E. Geologic map of the central far side of the Moon [J]. Alexander,1978:10-17 [2] SPUDIS P D,REISSE R A,GILLIS J J. Ancient multiring basins on the Moon revealed by clementine laser altimetry [J]. Science,1994,266(5192):1848 [3] GARRICK-BETHELL I,ZUBER M T. Elliptical structure of the lunar South Pole-Aitken basin [J]. Icarus,2009,204(2):399-408 [4] MELOSH H J. Impact cratering:a geologic process [M]. UK:Oxford University,1989. [5] MORIARTY D P,PIETERS C M,ISAACSON P J. Compositional heterogeneity of central peaks within the South Pole-Aitken Basin [J]. Journal of Geophysical Research-planets,2013,118(11):2310-2322 [6] PIETERS C M,TOMPKINS S,HEAD J W,et al. Mineralogy of the mafic anomaly in the South Pole-Aitken basin:implications for excavation of the lunar mantle [J]. Geophysical Research Letters,1997,24(15):1903-1906 [7] PIETERS C M,III J W H,GADDIS L,et al. Rock types of South Pole‐Aitken basin and extent of basaltic volcanism [J]. Journal of Geophysical Research Planets,2001,106(E11):28001-28022 [8] JOLLIFF B L,GILLIS J J,HASKIN L A,et al. Major lunar crustal terranes:surface expressions and crust-mantle origins [J]. J. Geophys. Res,2000,105(E2):4197-4216 [9] LAWRENCE D J,FELDMAN W C,BLEWETT D T,et al. Iron Abundances on the lunar surface as measured by the lunar prospector gamma-ray spectrometer [C]// Lunar and Planetary Science Conference. USA:Lunar and Planetary Science Conference,2001. [10] LAWRENCE D J,ELPHIC R C,FELDMAN W C,et al. Small-area thorium features on the lunar surface [J]. Journal of Geophysical Research Atmospheres,2003,108(108):369-378 [11] OHTAKE M,MATSUNAGA T,HARUYAMA J,et al. The global distribution of pure anorthosite on the Moon [J]. Nature Publishing Group,2009,461(7261),236-240 [12] KRAMER G Y,KRING D A,NAHM A L,et al. Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy[J]. Icarus,2013,223(1):131-148 [13] YAMAMOTO S,NAKAMURA R,MATSUNAGA T,et al. Olivine-rich exposures in the South Pole-Aitken Basin [J]. Icarus,2012,218(1):331-344 [14] MUSTARD J F,PIETERS C M,ISAACSON P J,et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data [J]. Journal of Geophysical Research Planets,2011,116(E6):0-12 [15] KLIMA R L,PIETERS C M,BOARDMAN J W,et al. New insights into lunar petrology:distribution and composition of prominent low‐Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3) [J]. Journal of Geophysical Research Atmospheres,2011,116(E6):0-6 [16] BESSE S,SUNSHINE J M,STAID M I,et al. Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3) [J]. Journal of Geophysical Research Planets,2011,116(E6):445-455 [17] STAID M I,PIETERS C M,BESSE S,et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan‐1 [J]. Journal of Geophysical Research Atmospheres,2011,116(4):239-241 [18] 吴昀昭. 月球反射光谱学及应用[J]. 地学前缘,2014,21(6):74-87 WU Y Z. Reflectance spectroscopy of the Moon and its application [J]. Earth Science Frontiers,2014,21(6):74-87 [19] WU Y,HEAD J W,PIETERS C M,et al. Regional geology of the Chang'e-3 landing zone II [C]// Lunar and Planetary Science Conference. USA:[s. n.],2014:2613. [20] LUCEY P G,BLEWETT D T,HAWKE B R. Mapping the FeO and TiO2,content of the lunar surface with multispectral imagery [J]. Journal of Geophysical Research Planets,1998,103(E2):3679-3699 [21] LUCEY P G,BLEWETT D T,JOLLIFF B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet/visible images [J]. Journal of Geophysical Research Planets,2000,105(E8):20297-20305 [22] NOZETTE S,RUSTAN P,PLEASANCE L P,et al. The clementine mission to the moon:scientific overview[J]. Science,1994,266(5192):1835-9 [23] MCEWEN A S,ROBINSON M S. Mapping of the Moon by Clementine [J]. Advances in Space Research,1997,19(10):1523-1533 [24] PIETERS C M,TAYLOR L A,NOBLE S K,et al. Space weathering on airless bodies:resolving a mystery with lunar samples [J]. Meteoritics & Planetary Science,2000,35(5):1101-1107 [25] ZHANG X,WU Y,OUYANG Z,et al. Mineralogical variation of the late stage mare basalts [J]. Journal of Geophysical Research Planets,2016,121(10) [26] KLIMA R L,PIETERS C M,DYAR M D. Spectroscopy of synthetic Mg‐Fe pyroxenes I:Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared [J]. Meteoritics & Planetary Science,2007,42(2):235-253 [27] GAFFEY M J,BELL J F,BROWN R H,et al. Mineralogical variations within the S-Type Asteroid class [J]. Icarus,1993,106(2):573-602 [28] CLOUTIS E A,GAFFEY M J,JACKOWSKI T L,et al. Calibrations of phase abundance,composition,and particle size distribution for olivine‐orthopyroxene mixtures from reflectance spectra [J]. Journal of Geophysical Research Solid Earth,2012,91(B11):11641-11653 [29] 欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005. [30] JOLLIFF B L. 月球新观 [M]. 国土资源部探月小组译. 北京:地质出版社,2012. [31] ADAMS J B. Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system [J]. Journal of Geophysical Research,1974,79(32):4829-4836 [32] CLOUTIS E A,GAFFEY M J. Pyroxene spectroscopy revisited:Spectral‐compositional correlations and relationship to geothermometry [J]. Journal of Geophysical Research Planets,1991,96(E5):22809-22826 [33] PIETERS C M. Strength of mineral absorption features in the transmitted component of near‐infrared reflected light:First results from RELAB [J]. Journal of Geophysical Research Solid Earth,1983,88(B11):9534-9544 [34] CROWN D A,PIETERS C M. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra [J]. Icarus,1987,72(3):492-506
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.