Topography Characteristics Analysis of Von Kármán Crater Using LOLA Data

WANG Huihui1,2, MENG Zhiguo1,2, LI Cui1, ZHU Yunzhe1, CAI Zhanchuan2, LI Xiangyue1

PDF(5553 KB)
PDF(5553 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (1) : 57-65. DOI: 10.15982/j.issn.2095-7777.2018.01.008

Topography Characteristics Analysis of Von Kármán Crater Using LOLA Data

  • WANG Huihui1,2, MENG Zhiguo1,2, LI Cui1, ZHU Yunzhe1, CAI Zhanchuan2, LI Xiangyue1
Author information +
History +

Abstract

Von Kármán crater, located in the northwest of SPA, is the candidate landing site for Chang’e-4. In this paper, LOLA (onboard LRO satellite) data are processed by the maximum mean method, the root mean square height method and the box counting method respectively to acquire and analyze the slope, roughness and fractal dimension information of Von Kármán crater. The results show that the elevation of Von Kármán crater is low and the most-south area has the lowest elevation and the rest areas have respectively higher elevation. There are many impact structures in Von Kármán crater. The mean slope of Von Kármán basin is 1.3° and there are about 85% areas having the slope less 2°. There are 95.1% areas having roughness of less than 20m and the FD (Fractal Dimension) of the whole Von Kármán basin is high. All of these show that Von Kármán basin has smooth topography and stable structure. The statistical results hint that the south, southeast, and northeast parts of Von Kármán basin have lower slope, lower roughness and higher FD, which makes the basin is appropriate for the Chang’e-4’s landing. What’s more, the comparative analysis presents that the topography condition in Von Kármán basin is better than that in Chang’e-3 landing area.

Keywords

LOLA data / Von Kármán crater / landing site / topography

Cite this article

Download citation ▾
WANG Huihui, MENG Zhiguo, LI Cui, ZHU Yunzhe, CAI Zhanchuan, LI Xiangyue. Topography Characteristics Analysis of Von Kármán Crater Using LOLA Data. Journal of Deep Space Exploration, 2018, 5(1): 57‒65 https://doi.org/10.15982/j.issn.2095-7777.2018.01.008

References

[1] ?吴伟仁,王琼,唐玉华,等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报,2017,4(2):111-117
WU W R,WANG Q,TANG Y H,et al. Design of Chang’e-4 lunar farside soft-landing mission [J]. Journal of Deep Space Exploration,2017,4(2):111-117
[2] SNAPE J F,FAGAN A L,ENNIS M E,et al. Science-rich mission sites within South Pole-Aitken basin,Part 2:Von Kármán Crater [C]//Lunar and Planetary Science Conference. [S. l]:Lunar and Planetary Science Conference,2010:1857.
[3] 郭弟均,刘建忠,籍进柱,等. 月球的全球构造格架初探[J]. 地球物理学报,2016,59(10):3543-3554
GUO D J,LIU J Z,JI J Z,et al. Preliminary study on the global geotectonic framework of the Moon [J]. Chinese Journal of Geophysics,2016,59(10):3543-3554
[4] WILHELMS D E,MCCAULEY J F,TRASK N J. The geologic history of the Moon,86-600177 (BKS3) [R]. Washington:U. S. G. P. O.,1987.
[5] HARUYAMA J,OHTAKE M,MATSUNAGA T,et al. Long-lived volcanism on the lunar farside revealed by SELENE terrain camera [J]. Science,2009,323:905-908
[6] 焦中虎,刘少峰,奚晓旭,等. 南极-艾肯盆地Th异常的富集特征和机理[J]. 中国科学:物理学 力学 天文学,2012(1):95-106
JIAO Z H,LIU S F,XI X X,et al. The South Pole-Aitken basin thorium anomaly and its enrichment characteristics and mechanisms [J]. Scientia Sinica Physica,Mechanica & Astronomica,2012(1):95-106
[7] SPUDIS P D,REISSE R A,GILLIS J J. Ancient multiring basins on the moon revealed by Clementine Laser Altimetry [J]. Science,1994,266(5192):1848-51
[8] LUCEY P G,TAYLOR G J,HAWKE B R,et al. FeO and TiO 2,concentrations in the South Pole-Aitken basin:Implications for mantle composition and basin formation [J]. Journal of Geophysical Research Planets,1998,103(E2):3701-3708
[9] 肖龙,乔乐,肖智勇,等. 月球着陆探测值得关注的主要科学问题及着陆区选址建议[J]. 中国科学:物理学 力学 天文学,2016,46(2):029602
XIAO L,QIAO L,XIAO Z Y,et al. Major scientific objectives and candidate landing sites suggested for future lunar explorations [J]. Scientia Sinica Physica,Mechanica & Astronomica,1998,103(E2):3701-3708
[10] SMITH D E,ZUBER M T,JACKSON G B,et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission [J]. Space Science Reviews,2010,150(1-4):209-241
[11] ZUBER M T,SMITH D E,ZELLAR R S,et al. The lunar reconnaissance orbiter laser ranging investigation [J]. Space Science Reviews,2010,150(1-4):63-80
[12] FRANK J R,小弗兰克·莫林,马援. 月球勘测者“月球勘测轨道器”[J]. 国际航空,2006(3):83-83
[13] ROSENBURG M A,AHARONSON O,HEAD J W,et al. Global surface slopes and roughness of the moon from the Lunar Orbiter Laser Altimeter [J]. Journal of Geophysical Research Planets,2011,116(E2):1161-1172
[14] CAO W,CAI Z C,TANG Z S. Lunar surface roughness based on multiscale morphological method [J]. Plantary and Space Science,2015,108:13-23
[15] LLOYD,CHRISTOPHER D,MCDONNELL,et al. Principles of geographical information systems [J]. Oxford University Press,1998,12(1):102-102
[16] 奚晓旭,刘少峰,吴志远,等. 基于粗糙度的月表虹湾地区地形地貌解译[J]. 国土资源遥感,2012,24(1):95-99
XI X X,LIU S F,WU Z Y,et al. The Interpretation of the land form of Sinus Iridum on the moon based on the roughness [J]. Remote Sensing for Land & Resources,2012,24(1):95-99
[17] CORD A,BARATOUX D,MANGOLD N,et al. Surface roughness and geological mapping at sub hectometer scale from the High Resolution Stereo Camera onboard Mars Express [J]. Icarus,2007,191(1):38-51
[18] 周宏伟,谢和平,Kwasniewski M A,等. 粗糙表面分维计算的立方体覆盖法[J]. 摩擦学学报,2000,20(6):455-459
ZHOU H W,XIE H P,KWASNIEWSKIMA,et al. Fractal dimension of rough surface estimated by the cubic covering method [J]. Tribology,2000,20(6):455-459
[19] ZHOU H W,XIE H. Direct estimation of the fractal dimensions of a fracture surface of rock [J]. Surface Review & Letters,2012,10(05):751-762
[20] CAO W,CAI Z,TANG Z. Fractal structure of lunar topography:an interpretation of topographic characteristics [J]. Geomorphology,2015,238:112-118
[21] STUART-ALEXANDER D E. Geologic map of the central far side of the moon [J]. Alexander,1978:1-5
[22] PASCKERT J H,HIESINGER H,BOGERT C H V D. Lunar farside volcanism in and around the South Pole-Aitken basin [J]. Icarus,2017,299:538-562
PDF(5553 KB)

Accesses

Citations

Detail

Sections
Recommended

/