Transfer Trajectory Optimal Design for Earth-Moon L2 Based on Invariant Manifolds

AN Ran, WANG Min, LIANG Xingang

PDF(3456 KB)
PDF(3456 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (3) : 252-257. DOI: 10.15982/j.issn.2095-7777.2017.03.008

Transfer Trajectory Optimal Design for Earth-Moon L2 Based on Invariant Manifolds

  • AN Ran, WANG Min, LIANG Xingang
Author information +
History +

Abstract

During the optimal design of transfer trajectory to translunar libration point,the payload launch capacity of Lunar Relay Satellite can be improved greatly if the electric thrusters which have high specific impulse and low thrust can be used as main propulsion. The optimal design of low-thrust transfer trajectory is studied which makes use of the invariant manifolds of Earth-Moon system based on the hybrid method. GEO is the initial orbit and halo orbit around translunar libration point L2 is the aim orbit of the transfer trajectory. The simulation result shows that thruster direction control strategy which consumes the least propellant for transfer trajectory has been obtained. The result is of great important engineering meaning.

Keywords

electric thruster / optimal control theory / hybrid method / low-thrust transfer / translunar libration point

Cite this article

Download citation ▾
AN Ran, WANG Min, LIANG Xingang. Transfer Trajectory Optimal Design for Earth-Moon L2 Based on Invariant Manifolds. Journal of Deep Space Exploration, 2017, 4(3): 252‒257 https://doi.org/10.15982/j.issn.2095-7777.2017.03.008

References

[1] 刘江,赵宏. 卫星电推进应用技术现状及发展[C]//第十二届空间及运动体控制技术学术年会. 北京:自动化学会. 2006.
Liu J,Zhao H. Present situation and development of application of satellite electric propulsion[C]// The 12th Annual Conference on Space and Motion Control Technology. Beijing:Automation Society,2006.
[2] 魏延明. 国外卫星推进技术发展现状与未来20年发展趋势[J]. 航天制造技术,2011(2):7-12
Wei Y M. Current situation and developing direction of foreign satellite propulsion technology in the next 20 years[J]. Aerospace Manufacturing Technology,2011(2):7-12
[3] 温正,王敏,仲小清. 多任务模式电推进技术[J]. 航天器工程,2014,23(1):118-123
Wen Z,Wang M,Zhong X Q. Multitask mode electric propulsion technologies[J]. Spacecraft Engineering,2014,23(1):118-123
[4] Anderson R L,Martin W L. Role of invariant manifolds in low-thrust trajectory design[J]. Journal of Guidance Control and Dynamics,2009,32(6):1921-1930
[5] Folta D C,Pavlak T A. Earth–Moon libration point orbit station keeping: theory, modeling, and operations[J]. Acta Astronautica,2014,94(1):421-433
[6] Zhou J,Xue L,Zhou F Q. Computations of low energy escaping/ capturing trajectories in hill's region via an extended poincaré map[J]. Journal of Astronautics,2007,28(3):643-647
[7] 王青,陈宇,张颖昕,等. 最优控制-理论、方法与应用[M]. 北京:高等教育出版社,2011.
Wang Q,Chen Y,Zhang Y X,et al. Optimal control-theory,method and applications[M]. Beijing:Higher Education Press,2011.
[8] 梁新刚. 面向两类空间对抗任务的轨道优化设计方法研究[D]哈尔滨:哈尔滨工业大学,2008.
Liang X G. Research on orbit optimization design method for two kinds of space confrontation tasks[D]. Harbin:Harbin Institute of Technology,2008.
[9] 崔平远,乔栋,崔祜涛. 深空探测轨道设计与优化[M]. 北京:科学出版社,2014.
Cui P Y, Qiao D,Cui H T. Orbital design and optimization of deep space exploration mission[M]. Beijing:Science Press,2014.
PDF(3456 KB)

Accesses

Citations

Detail

Sections
Recommended

/